Abstract:
Subject-matter of this invention is a method for assembling components, such as M.O.S, devices and the like, upon printed circuit boards by clinching, such method including the steps of providing a board bearing a printed circuit with places upon which a component is to be assembled; applying the component upon the board with its pins in contact with the places of the circuit among which it is to be assembled; pressing the component in order that the pins are forced to penetrate through the thickness of the board; and clinching the end portions of the pins protruding from the back side of the board.
Abstract:
A composite printed circuit board having a metallic layer supporting body with a first insulating layer thereon and wherein the insulating layer has copper printed circuits placed thereon. The printed circuit board is adapted to precisely hold and position electric components (normally electrical motor sensors) on stamped out recesses in the composite body. The stamped out recesses have edge portions for finitely positioning the components and allow for electric leads coming from the components to pass over the bent tabular portion of the recess to be soldered to the copper circuits.
Abstract:
An electronic device which includes a circuit sheet having a conductive path thereon. An adhesive is deposited on the conductive path, the adhesive including a nonconductive base incorporating randomly spaced conductive particles. A circuit component is forced through the adhesive, the conductive path and the circuit sheet carrying a portion of the adhesive therewith between the circuit component and the conductive path. The carried portion of the adhesive is compressed for establishing contact between the conductive particles and thereby conductivity between the circuit component and the conductive path leaving the adhesive other than that portion in a nonconductive state.
Abstract:
Electrical circuitry 32 is comprised of a plurality of layers 30, 100, each layer 30, 100 including one or more electrical pathways 36, 38, each layer 30, 100 also including insulation 34 for insulating at least part of one layer 30 from another layer 100. The pathways 36, 38 comprise repeating patterns 40, 42. Each pathway 36, 38 of each layer 30, 100 can communicate with the pathways 36, 38 of the next adjacent layers 30, 100. Some portions of the patterns 40, 42 which comprise the pathways 36, 38 of each layer 30, 100 can be at least partially aligned with some portion of the patterns 40, 42 of pathways 36, 38 of the other layers 30, 100. Other portions of the pathways 36, 38 of the layers 30, 100 remain unaligned. A pulse laser 134 can be used to sever unaligned portions of the pathways 36, 38 as appropriate to create the desired electrical circuitry 32. Components can be secured to the electrical circuitry as required. Further, such circuitry can be used in the construction of the final metallization layers of chips such as gate arrays.
Abstract:
A cam activated electrical switching means for an elastic multicircuit printed circuit board (PCB). A plurality of PCB reeds with disattached portions at one end nearest the edge of the PCB are cut out in the generally central portion of the PCB, and an electrical board, positioned adjacent to but separated from the PCB, made of elastic PCB-type material has the same number of plurality of flexible reeds cutout therefrom in its central portion. The PCB reeds and electrical board flexible reeds have electrical leads etched on the back sides thereof with the PCB reeds having an electrical contact pin on the front of the disattached end portion facing the etched electrical lead on the back of the disattached end of the flexible reed. An embossed mechanical rider is positioned on the front of the disattached end of the flexible reeds. The electrical etched lead on the back of the flexible reed may be connected to some electrical source on the electrical board. The electrical contact pin is electrically connected through the PCB reed to the etched lead on the back of the PCB reed which is further electrically connected to an electrical component etched on the back of the PCB. The normally open pairs of disattached end portions of the interfacing PCB and flexible reeds are selectively closed by a rotatable cam having selective lobes on its circumference which contacts the embossed mechanical riders and flexes the flexible reeds against the PCB reeds to selective switch the electrical source to electrical components.
Abstract:
The invention relates to a method of interconnecting conductors of different layers of a multilayer printed circuit board by forming a depression in the relevant conductor of the outermost layer, so that the insulation layer(s) is deformed and contact is made between the outermost layer and the appropriate conductor(s) of the next layer or layers.The method can suitably be used in multilayer printed circuits on a substrate and in flexible multilayer printed circuits on an electrically insulating foil. In the latter case a temporary backing surface is required for the depression process. The substrate or the temporary backing surface must be deformable to a sufficient degree.
Abstract:
The present invention discloses a connect/disconnect multichannel electri connector which uses the elasticity of printed circuit board material to maintain electrical contact pressure between contact points on an electrical component on the board and an electrical contact off the board. The contact points need not be concentrated but may be dispersed over the board or on reeds cutout from the board for flexing at the disattached end thereof by a connect/disconnect means to selectively maintain electrical contact.
Abstract:
Electrical components (10 or 30) are fastened to a mounting surface (16) of a printed circuit board (11) by forming a plurality of thermoplastic pins (20, 35) projecting from the mounting surface of the board adjacent to positions where components are to be located. The component is placed on the board so that portions of the component are located adjacent to portions of the pins, following which portions of the pins are heated and formed about portions of the component to form plastic locking sections (22 or 37) that fasten the component to the board in a desired position. The mounting surface (16) of the board may be formed with a pocket (18 or 33) that receives and positions the component at the desired location, so that component leads (17 or 32) extend along the mounting surface to positions overlapping lead-contact areas (14, 34) of printed contact patterns deposited on the mounting surface, after which the leads are attached to the contact areas, as by reflow soldering.
Abstract:
This invention relates to an arrangement for attaching discrete electrical components to a generally flat layer of sheet material. Both mechanical and electrical connections are provided by the attachment elements of the present invention. One form of the invention is directed to a membrane switch keyboard wherein one of the layers of the membrane switch has a tail extending therefrom. The tail has a free end which is adhesively secured to some portion of the keyboard. Conductive traces are formed on the tail and extend to the free end where they contact the leads of an electrical component. The component is held between the tail and the keyboard. In another aspect, which may be applied to the membrane switch keyboard just described, the invention includes a sheet material having two or more slits cut therein for each of the component's leads. The slits are cut in a portion of the sheet having conductive traces formed thereon. The leads of the component are then interlaced through the tabs created by the slits to both mechanically and electrically connect the component to the sheet.
Abstract:
An improved illuminated display system is disclosed which can be positively and accurately assembled with a plurality of low profiled illuminated indicator units to display a wide variety of input information. The illuminated indication is provided by a plurality of light emitting diodes inserted in edgewise fashion into slots in flat flexible circuitry with the remaining components attached thereto in conventional fashion. The circuit assembly is folded into containers to form the individual indicator units which are likewise, preferably, inserted into apertures in high current flat flexible circuitry to make wiping contact with the conductors thereof. The subject system obviates the prior art requirement for working in cramped spaces behind panels by providing the means to connect the indicator units of a display to associated circuitry from the front of the panel thereby producing a low profiled display panel.