Abstract:
Plated through holes pass through clearances in a ground plane of a circuit board. A conductive collar/spoke arrangement is constructed on the ground plane adjacent the clearance, to provide an inductive component to the coupling between a plated through hole and the ground plane. The inductive component impedes the transfer of high-frequency noise between the through hole and the ground plane. Other embodiments are also described and claimed.
Abstract:
A via transmission line for a multilayer printed circuit board (PCB) in which a wave guiding channel is formed by a signal via or a number of signal vias, an assembly of ground vias surrounding the signal via or corresponding number of coupled signal vias, a set of ground plates from conductor layers of the multilayer PCB, and a clearance hole. In this via transmission line, the signal via, or the number of signal vias forms an inner conductive boundary, ground vias and ground plates from conductor layers of the multilayer PCB form an outer conductive boundary, and the clearance hole provides both isolation of the inner conductive boundary from the outer conductive boundary and high-performance broadband operation of the via transmission line by means of the predetermined clearance hole cross-sectional shape and dimensions where the cross-sectional shape of the clearance hole is defined by the arrangement of ground vias in the outer conductive boundary and dimensions of the clearance hole are determined according to a method to minimize frequency-dependent return losses caused by specific corrugations of the outer conductive boundary formed by ground plates in the wave guiding channel of the via transmission line.
Abstract:
Disclosed are methods of making a semiconductor package comprising at least one thin-film capacitor embedded into at least one build-up layer of said semiconductor package. A thin-film capacitor is provided wherein the thin-film capacitor has a first electrode and a second electrode separated by a dielectric. A temporary carrier layer is applied to the first electrode and the second electrode is patterned. A PWB core and a build-up material are provided, and the build-up material is placed between the PWB core and the patterned second electrode of said thin-film capacitor. The patterned electrode side of the thin-film capacitor is laminated to the PWB core by way of the build-up material, the temporary carrier layer is removed, and the first electrode is patterned.
Abstract:
A printed circuit board (PCB) includes a power layer, a ground layer, a through hole, and a conductor. The through hole goes through the power layer and the ground layer. The conductor includes a hollow columnar main body and an extending portion. The main body is formed in a bounding wall of the through hole, and is conductively connected to one of the power layer and the ground layer, and insulated from the other one of the power layer and the ground layer by an insulation area. The extending portion extends out from the circumferential surface of the main body. The extending portion extends into the insulation area and is insulated from the other one of the power layer and the ground layer, to increase an area of the power layer facing the ground layer.
Abstract:
A method of producing a capacitor for a printed circuit board includes producing high-dielectric sheets and selecting ones of the high-dielectric sheets, which are substantially free from a defect after the heat process. Each of the high-dielectric sheets is produced by providing a first electrode, forming a first sputter film on the first electrode, forming an intermediate layer on the first sputter film by calcining a sol-gel film, forming a second sputter film on the intermediate layer, and providing a second electrode on the second sputter film. The high-dielectric sheets are subjected to a heat process in which the high-dielectric sheets are subjected to a first temperature at least once and a second temperature higher than the first temperature at least once.
Abstract:
A printed wiring board which can certainly prevent damage of conductive pattern caused by the terminal. The printed wiring board has a board, a conductive pattern, a through-hole and a non-conductive area. A lead wire of resistance mounted on the printed wiring board is inserted into the through-hole 4. The lead wire projects from a surface of the board, and is bent close to the surface. The non-conductive area is formed into a fan-shaped shape enlarging toward a tip of the lead wire from a center of the through-hole. Because the bent lead wire is arranged on the non-conductive area, the non-conductive area can prevent damage of the conductive pattern which is caused by touching the lead wire to the conductive pattern.
Abstract:
When a package substrate with a built-in capacitor includes a first thin-film small electrode 41aa and a second thin-film small electrode 42aa that are electrically short-circuited to each other via a pinhole P in a high-dielectric layer 43, a power supply post 61a and a via hole 61b are not formed in the first thin-film small electrode 41aa, and a ground post 62a and a via hole 62b are not formed in the second thin-film small electrode 42aa, either. As a result, the short-circuited small electrodes 41aa and 42aa are electrically connected to neither a power supply line nor a ground line, and become a potential independent from a power supply potential and a ground potential. Therefore, in the thin-film capacitor 40, only the portion where the short-circuited small electrodes 41aa and 42aa sandwich the high dielectric layer 43 loses the capacitor function, and portions where other thin-film small electrodes 41a and 42a sandwich the high dielectric layer 43 maintain the capacitor function.
Abstract:
A differential signal via structure for a printed circuit board having a pair of signal vias extending vertically from a surface of the board to an interior region of the board to contact signal conductors disposed horizontally within the interior region of the board and a pair of ground vias extending vertically from a surface of the circuit board to an interior region of the board to contact ground conductors disposed horizontally within the interior region of the board.
Abstract:
Disclosed herein is a printed circuit board having an RF module power stage circuit embedded therein. Specifically, this invention relates to a printed circuit board having an RF module power stage circuit embedded therein, in which a terminal pad for a resistor, a bead, or an inductor is defined or formed on a power supply plane of a multilayered wired board to connect the resistor, the bead, or the inductor to the power supply plane, and the resistor, the bead, or the inductor is connected in parallel with a decoupling capacitor by using a via hole or by embedding the resistor, the bead or the inductor perpendicular to the power supply plane, thus decreasing the size of the RF module and improving the performance thereof.
Abstract:
A microstripline transmission line arrangement carries a signal having a fundamental frequency. The arrangement includes a first microstripline transmission line, a second microstripline transmission line, and a coaxial electrically conductive conduit interconnecting the first transmission line and the second transmission line. The conduit includes a signal conductor and an electrically grounded shield substantially surrounding the signal conductor. The conductor and the shield are positioned relative to each other to thereby comprise a means for lowpass filtering the signal. A cutoff frequency of the lowpass filtering is less than a third harmonic of the fundamental frequency.