Abstract:
In a stacked package in which a plurality of packages having semiconductor elements mounted on substrates are stacked, while being electrically connected together, by use of connection sections, wherein the connection sections are formed from pillar-like members and solder joint sections and the upper package is supported on the lower package by pillar-like members.
Abstract:
Provided is a circuit device capable of increasing the packaging density and preventing the thermal interference between circuit elements to be incorporated. In a hybrid integrated circuit device, a first circuit board and a second circuit board are fitted into a case member in a way that the first circuit board is overlaid with the second circuit board. A first circuit element is arranged on the upper surface of the first circuit board and a second circuit element is arranged on the upper surface of the second circuit board. Furthermore, inside the case member, provided is a hollow portion that is not filled with a sealing resin. Such a configuration prevents the second circuit element, which is a microcomputer, from operating unstably due to a heat generated in the first circuit element, which is a power transistor, for example.
Abstract:
A portable electronic device (20) includes a circuit board (21) and at least one conducting pole (22). The conducting pole is mounted on the circuit board and includes a breakable portion (2224), the breakable portion is configured to be the part that breaks when the conducting pole is crumpled.
Abstract:
An electrically conductive pin comprising a pin stern and a pin head attached to the pin stem. The pin head is adapted to be mounted onto a surface of a microelectronic substrate to support the pin stem. The pin head has an underside surface defining a continuous curve configured to allow gases to escape from a pin-attach solder region adjacent the underside surface.
Abstract:
There is provided a stacked mounting structure in which, it is possible to realize a narrowing of pitch and to secure a height which enables to mount components to be mounted, and a method of manufacturing stacked mounting structure.The stacked mounting structure includes a plurality of members provided with a mounting area which is necessary for installing and operating components to be mounted on at least one principal surface, and an area for connections for signal transfer for operating the components to be mounted, and an electroconductive member which is disposed on the area for connections between the mutually facing members, and a cross section of the electroconductive member is same as or smaller than the area for connections, and an end portion of the electroconductive member is extended from a principal surface of one member up to a principal surface of the other member, and a height of the electroconductive member regulates a distance of the mounting area.
Abstract:
A stud is a structure for supporting, on a printed circuit board, a mounting component such as another printed circuit board or a device. This structure is surface-mounted on the printed circuit board by soldering or press-fitting. The structure is a constituted by a columnar-shaped structure and the like. One end of the columnar-shaped structure is surface-mounted on the printed circuit board, and the other end thereof is fixed to the mounting component.
Abstract:
A semiconductor package includes a wiring substrate having a connection pad on both surface sides respectively, and a supporting plate provided on one surface side of the wiring substrate and formed of an insulator in which an opening portion is provided in a portion corresponding to the connection pad. The external connection terminals (the lead pins, or the like) are provided on the connection pads on the surface of the wiring substrate on which the supporting plate is provided, and the semiconductor chip is mounted on the connection pads on the opposite surface.
Abstract:
An exemplary semiconductor die package is disclosed having one or more semiconductor dice disposed on a first substrate, one or more packaged electrical components disposed on a second substrate that is electrical coupled to the first substrate, and an electrically insulating material disposed over portions of the substrates. The first substrate may hold power-handling devices and may be specially constructed to dissipation heat and to facilitate fast and inexpensive manufacturing. The second substrate may hold packaged components of control circuitry for the power-handling devices, and may be specially constructed to enable fast and inexpensive wiring design and fast and inexpensive component assembly. The first substrate may be used with different designs of the second substrate.
Abstract:
A component mounting method of a multilayer printed wiring board includes a plurality of solder bumps to mount electronic components formed on both of or either of the front and back thereof, wherein when the solder bumps are formed of any of first, second, third and fourth solders, the first, second, third and fourth solders have different melting points and the melting points of the first, second, third and fourth solders are arranged as the melting point of the first solder, the melting point of the second solder, the melting point of the third solder and the melting point of the fourth solder in order of high melting point and the first, second, third and fourth solders are sequentially used to solder electronic components and the like in order of high melting point. Further, in that case, it is preferable that the solder bump having large volume should be soldered earlier than other solder bumps. This multilayer printed wiring board is easy to mount components, excellent in work efficiency or easy in reworkable process and a mounting method of such multilayer printed wiring board is also provided.
Abstract:
A PGA type wiring board includes a wiring board to which a head portion of a pin is joined to a pad portion with solder interposed therebetween, and a pin fixing plate having a through hole formed therein through which a shank portion of the pin is inserted, and having an adhesive layer formed on one surface thereof. The pin fixing plate is bonded to the wiring board with the adhesive layer interposed therebetween while the shank portion of the pin is inserted through the through hole. The through hole is shaped in a stepped form with a two-step configuration when viewed in cross section.