Abstract:
A method and apparatus for monitoring the presence of water vapor in helium features providing two narrow infrared frequency band within and outside a water vapor absorption band, alternately projecting the two bands of infrared radiation into the helium by using the polarization properties of the infrared radiation, and subsequently detecting the two infrared bands and comparing their amplitudes. Besides providing an accurate and reliable measurement, the invention is compact and requires no moving mechanical parts.
Abstract:
A photoelectric photometer for light absorption analysis in which a light beam passing through the sample cell is split into three beams of monochromatic light having different wavelengths which correspond to the wavelengths at the peak maximum, i.e., the beginning and the end of the absorption spectrum band, due to the constituent contained in the sample, and the light energy of the wavelength exhibiting the peak maximum is compared with a mean value of the light energies of the other two wavelengths, whereby the absorption degree of the constituent of the sample to be determined is indicated for direct reading.
Abstract:
System for performing chemical spectroscopy on samples from the scale of nanometers to millimeters or more with a multifunctional platform combining analytical and imaging techniques including dual beam photo-thermal spectroscopy with confocal microscopy, Raman spectroscopy, fluorescence detection, various vacuum analytical techniques and/or mass spectrometry. In embodiments described herein, the light beams of a dual-beam system are used for heating and sensing.
Abstract:
An apparatus for interrogating a media to be analyzed, such as an avian egg, is provided. Such an apparatus includes an emitter assembly configured to emit light toward a media. The emitter assembly has a first emitter source configured to emit a first light signal and a second emitter source configured to emit a second light signal. The first and second light signals are transmitted through the media in phase quadrature. A detector assembly is configured to detect the first and second light signals transmitted through the media. The detector assembly is further configured to resolve a relative or absolute amplitude of each of the first and second light signals. A processor is configured to process the detected signal to identify a property of the media using at least one of the relative and absolute amplitudes of the first and second light signals. An associated method is also provided.
Abstract:
A method for calibrating sensitivity of a photometer includes measuring, by a double-beam spectrophotometer, an absorbance spectrum of a control solution, which has been diluted and includes a control substance. The method further includes linearly regressing the absorbance spectrum of the control solution over a predetermined range of wavelengths and determining whether a first slope of the linearly regressed absorbance spectrum of the control solution falls within a range of slopes of lines obtained from linearly regressing absorbance spectra of a plurality of reference solutions over the predetermined range of wavelengths. A concentration of chromophore in each reference solution is known and the absorbance spectra of the plurality of reference solutions have been obtained by the double-beam spectrophotometer.
Abstract:
System for performing chemical spectroscopy on samples from the scale of nanometers to millimeters or more with a multifunctional platform combining analytical and imaging techniques including dual beam photo-thermal spectroscopy with confocal microscopy, Raman spectroscopy, fluorescence detection, various vacuum analytical techniques and/or mass spectrometry. In embodiments described herein, the light beams of a dual-beam system are used for heating and sensing.
Abstract:
A beating spectroscopy device includes: first and second quantum cascade lasers; a quantum cascade detector; and a sample holder configured to hold a sample on an optical path between the second quantum cascade laser and the quantum cascade detector. Lights from the first and second quantum cascade lasers are detected by the quantum cascade detector while a wavelength of the light from the second quantum cascade laser is changed to scan a frequency of a beating signal having a frequency in accordance with a wavelength difference between the lights from the first and second quantum cascade lasers.
Abstract:
In some embodiments, a system comprises a head-mounted frame removably coupleable to the user's head; one or more light sources coupled to the head-mounted frame and configured to emit light with at least two different wavelengths toward a target object in an irradiation field of view of the light sources; one or more electromagnetic radiation detectors coupled to the head-mounted member and configured to receive light reflected after encountering the target object; and a controller operatively coupled to the one or more light sources and detectors and configured to determine and display an output indicating the identity or property of the target object as determined by the light properties measured by the detectors in relation to the light properties emitted by the light sources.