Abstract:
The present invention relates to a method for fabricating a hollow microneedle having a variable appearance. The method makes it possible to vary the length of the microneedle, the outer and inner diameters of the upper and lower parts thereof, the aspect ratio, the sharpness, and the structural bending rate thereof, in accordance with the purposes of the same. Accordingly, the appearance of the hollow microneedles according to the present invention can be varied with flexibility according to various purposes, such as the transferring of medication and the taking of a blood sample, and to various factors, such as the target part for the medication transfer, the depth of the medication transfer, and the amount and viscosity of the medication. Thus, the microneedle can be used as a multi-purpose device for transferring medication.
Abstract:
Provided is a method of manufacturing a hollow microneedle structure. The method includes forming an injection mold having a through hole, filling the injection mold with a photoresist formed of a viscous material, and extruding the photoresist from the injection mold through the through hole, solidifying the extruded photoresist to form a needle-type photoresist structure, forming a seed layer on the surface of the photoresist structure, forming a metal plated layer on the seed layer, inclining an end tip of the photoresist structure having the metal plated layer, and removing the photoresist from the metal plated layer to form a hollow. Thus, the hollow microneedle structure can be manufactured to have such diameter, length, hardness, and inclination angle as to minimize pain. The hollow microneedle structure can be combined with an apparatus for detecting a biomaterial or injecting cosmetic substances or medicines, and variously applied.
Abstract:
A method of manufacturing microneedles is provided, the method includes (i) depositing a substance onto a first surface and (ii) forming a solid needle-like shape from the substance. The substance may be deposited in non-solid form and subsequently solidified. A method provides an array of such microneedles.
Abstract:
The present invention provides a description for an instrument for creating arrays of metal nanostructures allows on various substrates at the wafer scale. Embodiment methods permit for the formation of individual and arrays of metal alloys of nanostructures by bringing an array of liquid metal droplets droplet in contact with an array of metal patterns by using high precision manipulation mechanism. Top view and side view optical lenses are used to observe the manipulation process and also allow for aligning the metal droplets with film of solid metal patterns. As one example, this instrument is capable of pattering high aspect ratio nanostructures such as silver-gallium (Ag2Ga) nanowires onto prefabricated microstructures. This invention also describes a method for forming arrays of liquid metal droplets on the tip of micro structures by bringing a flexible membrane containing a liquid metal film, in contact with a pattern of microstructures.
Abstract:
A hollow microtube structure capable of being used as a minimally invasive electrode, a production method thereof, and a biopsy device using the hollow microtube structure. The hollow microtube structure includes a semiconductor substrate and at least one hollow tube formed on a surface of the semiconductor substrate. The hollow tube includes a metal coating film layer on the inner surface and an electrically insulating coating film layer on the outer surface. The semiconductor substrate includes a through hole communicated with an interior of a hollow tube at a location where the hollow tube is formed. The production method includes an etching, a sacrificial layer forming, a metal coating film layer forming, an electrically insulating coating film layer forming, a tip portion removing, and a piercing. The biopsy device can be provided on a substrate side of the hollow microtube structure with at least one of an electric signal transmitter, an optical signal generator, a chemical fluid injector, an electrical measuring device, a chemical measuring device, and an optical measuring device.
Abstract:
A production process for a microneedle arrangement and a corresponding microneedle arrangement as well as a use for it is disclosed. The process has the following steps: forming an etching mask in grid form, with grid bars with corresponding grid crossing regions and grid openings in between on a substrate; carrying out an etching process to form the microneedle arrangement on the substrate using the etching mask and removing the etching mask. The etching mask in grid form has at least some of the grid crossing regions flat reinforcing regions, which extend beyond the grid bars.
Abstract:
A method of manufacturing a master plate includes the steps of forming a photoresist film on a substrate, disposing a photomask having a plurality of island radiation shields on the photoresist film followed by integrating the photomask and the photoresist film, applying light from a light source to the photoresist film through the photomask for selectively exposing the photoresist film, and developing the photoresist film to form a master plate, in which the method includes irradiating the photoresist film with the light from plural directions through the photomask to selectively expose the photoresist film from the respective directions.
Abstract:
A method and apparatus for puncturing a surface for extraction, in situ monitoring, and/or substance delivery uses microneedles with improved properties. Applications include easy to handle glucose monitoring using a group of hollow out-of-plane silicon microneedles to sample substances in interstitial fluid from the epidermal skin layer.
Abstract:
In the present disclosure a device for sensing and/or actuation purposes is presented in which microstructures (20) comprising shafts (2) with different functionality and dimensions can be inserted in a modular way. That way, out-of-plane connectivity, mechanical clamping between the microstructures (20) and a substrate (1) of the device, and electrical connection between electrodes (5) on the microstructures (20) and the substrate (1) can be realized. Connections to external circuitry can be realised. Microfluidic channels (10) in the microstructures (20) can be connected to external equipment. A method to fabricate and assemble the device is provided.
Abstract:
A method is provided for manufacturing microstructures of the type which contain a substrate and an array of protruding microelements with through-holes, which are used in penetrating layers of skin. The microelements are embossed or pressed into an initial substrate structure, which in some embodiments is formed from extruded polymeric material, and in some cases from two layers of polymer that are co-extruded. The through-holes are formed from filled through-cylinders of a second material that is removed after the embossing or pressing step; in other instances, the through-holes are left hollow during the embossing or pressing step.