Abstract:
The optical assemblies disclosed herein advantageously utilize a beamsplitting apparatus in association with either (i) the illumination path or (ii) the collection path of a color measurement instrument. For implementations involving the illumination path, the beamsplitting apparatus may be configured to spectrally divide one or more initial beams of light so as to emit a plurality of resultant beams of light, wherein the optical assembly is configured to illuminate a target using at least a first and a second of the plurality of resultant beams of light. Similarly, for implementations involving the collection path, the beamsplitting apparatus may be configured to spectrally divide light received from a target so as to emit a plurality of resultant beams of light, wherein the optical assembly is configured to detect at least a first and a second of the plurality of resultant beams of light. Advantageously, each of the first and second resultant beams of light is a product of a distinct set of one or more spectral constraints exacted by the beamsplitting apparatus.
Abstract:
Hard copy re-emission color measurement system, comprising a light arrangement for emitting light onto a hard copy, a light detector arranged to detect light re-emitted by the hard copy, and a control circuit configured to process the detected re-emitted light. The light arrangement is arranged to separately and simultaneously emit a first light having wavelengths longer than an ultraviolet wavelength and a second light having wavelengths in the ultraviolet range. The light arrangement is provided with a light guide arranged to guide the first and second light on an at least partly overlapping region on a hard copy.
Abstract:
A hand-held light measuring device includes a device housing (G) with a bottom face incorporating a measuring window (7) through which a measurement optical path extends so that a measurement object can be measured when the device housing (G) is positioned with its bottom face on the measurement object. The measuring device has an integrated, displaceably mounted white reference tile, which can be moved into the measurement optical path and moved back out of it again. The white reference tile is disposed in an end region of an oblong support plate (10) on its side directed towards the housing interior. The support plate (10) is mounted so that it can move backwards and forwards between a parked position and an operating position, and the support plate (10) terminates the device housing (G) at its bottom face and is recessed into the device housing (G) in the parked position, and the support plate (10) is lifted out from the bottom face of the device housing (G) and moved in the longitudinal direction and covers the measuring window (7) by means of the end region incorporating the white reference tile in the operating position. The kinematics of the support plate (10) and white reference tile are simple in design/operation and the support plate and white reference tile can be moved easily and comfortably.
Abstract:
A color chart processing apparatus includes a spectrum calculating unit for receiving information regarding a spectral reflection factor of each color contained in a predetermined color chart and information regarding determination illumination light, and determining a spectrum of the color contained in the predetermined color chart under the determination illumination light by calculating the received information, and a determination information output unit for receiving a color signal of a subject, determining which color of the predetermined color chart closest matches the color signal of the subject by comparing the spectrum of each color determined by the spectrum calculating unit with the color signal of the subject, and outputting information identifying the resulting determination color.
Abstract:
A system to provide radiant energy of selectable spectral characteristic (e.g. a selectable color combination) uses an integrating cavity to combine energy of different wavelengths from different sources. The cavity has a diffusely reflective interior surface and an aperture for allowing emission of combined radiant energy. Sources of radiant energy of different wavelengths, typically different-color LEDs, supply radiant energy into the interior of the integrating cavity. In the examples, the points of entry of the energy into the cavity typically are located so that they are not directly visible through the aperture. The cavity effectively integrates the energy of different wavelengths, so that the combined radiant energy emitted through the aperture includes the radiant energy of the various wavelengths. The apparatus also includes a control circuit coupled to the sources for establishing output intensity of radiant energy of each of the sources. Control of the intensity of emission of the sources sets the amount of each wavelength of energy in the combined output and thus determines a spectral characteristic of the radiant energy output through the aperture.
Abstract:
Provided are a method of precisely evaluating the performance of an optical sensor including light-emitting elements corresponding to light-emitting wavelengths respectively representing multiple colors as well as a light-receiving element even under a condition in which mists of color inks adhere to the sensor, and a printing apparatus for carrying out the method. To this end, how much the performance of the optical sensor mounted on a carriage decreases is evaluated based on a cumulative number of ejections for each ink color, which number corresponds to the amount of mist, and a degree at which each ink affects each color LED. This makes it possible to precisely evaluate the performance of the optical sensor including the light-emitting elements corresponding to the light-emitting wavelengths respectively representing the multiple colors as well as the light-receiving element even under the condition in which the mists of the color inks adhere to the sensor.
Abstract:
A method of colour assessment of a sample (10) with respect to a reference illuminant, includes illuminating the sample (10) with a light source (12) that comprises a fluorescent lamp (18) and a plurality of light-emitting diodes (24). The spectrum of the LEDs (24) supplements the spectrum of the fluorescent lamp (18) to reduce deviations between the combined spectrum of the light source (12) and a target spectrum. The target spectrum may be that of the reference illuminant or it may be adjusted to make allowance for known properties of a colour assessment cabinet (2) or an observing instrument (16). The LEDs (24) may be arranged so that their light passes through the bulb of the fluorescent lamp (18), which thereby acts as a diffuser. Alternatively, the LEDs (24) and the fluorescent lamp (18) may be located in a housing (31) from which their light can only reach the sample (10) after being mixed by reflection from multiple facets (34).
Abstract:
Provided are a method of precisely evaluating the performance of an optical sensor including light-emitting elements corresponding to light-emitting wavelengths respectively representing multiple colors as well as a light-receiving element even under a condition in which mists of color inks adhere to the sensor, and a printing apparatus for carrying out the method. To this end, how much the performance of the optical sensor mounted on a carriage decreases is evaluated based on a cumulative number of ejections for each ink color, which number corresponds to the amount of mist, and a degree at which each ink affects each color LED. This makes it possible to precisely evaluate the performance of the optical sensor including the light-emitting elements corresponding to the light-emitting wavelengths respectively representing the multiple colors as well as the light-receiving element even under the condition in which the mists of the color inks adhere to the sensor.
Abstract:
An image processing system is used for dentistry. Upon creating a false tooth of a patient (59), a plurality of illuminating light of LEDs with different wavelengths emit light and a photographing apparatus (1A) photographs a tooth portion of the patient (59), thereby obtaining image data. The image data is sent to a dentistry filing system (2A) serving as a processing apparatus, and color reproducing data is obtained by calculation. The color reproducing data is sent to a dentistry factory (55) via a public line. Data is searched from a database (56) for calculating a ceramic compounding ratio, compound data of the ceramic false tooth is obtained, matching the color of the tooth portion of the patient (59), and the false tooth approximate to the tooth color of the patient (59) is created.
Abstract:
The invention relates to an illumination device (1) with a number of light emitters, for example LEDs (L1, L2, L3, L4) of individual emission spectra. Sensor units (D1, D2, D3, D4) can produce a vector of measurement signals (S1, S2, S3, S4) that represent the light output of a single active light emitter. Based on a linear relation obtained during a calibration procedure, a characteristic value of the light output of that light emitter (L1, L2, L3, L4) is then calculated from the measurement vector, wherein said characteristic value is based on the coefficients of a decomposition of the individual emission spectrum into basis functions.