Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for receiving an image of the area of the mouth. Identifying a feature of interest within the image. Determining an actual reflectance and an actual topology of the feature of interest. Determining a desired reflectance and a desired topology of the feature of interest. Calculating an amount of DCA to be applied to a portion of the feature of interest based on comparing the actual reflectance to the desired reflectance and the actual topology to the desired topology. Causing the calculated amount of DCA to be applied to the portion of the feature of interest.
Abstract:
A hyperspectral Raman imaging system having the ability to focus on excitation laser beam over a relatively wide field of view due to the use of a lens array, in particular a microlens array. Hyperspectral selection is provided in one embodiment through the use of dual-axis controlled dielectric filtration. Methods for analyzing materials with the system are disclosed. The device or system can be used in generally any application where investigation of materials is required.
Abstract:
A method, a user interface and a system for use in determining shade of a patient's tooth, wherein a digital 3D representation includes shape data and texture data for the tooth is obtained. A tooth shade value for at least one point on the tooth is determined based on the texture data of the corresponding point of the digital 3D representation and on known texture values of one or more reference tooth shade values.
Abstract:
A camera system includes: a database which stores a plurality of stereoscopic color profiles, in which conversion relationships calculated from second image data obtained by photographing a plurality of reference color stereoscopic objects assigned with reference colorimetric values in advance and the reference colorimetric values corresponding to the second image data are associated with a plurality of illumination conditions in photographing; a selection unit which, based on an illumination condition at the time of photographing of a stereoscopic subject, selects a stereoscopic color profile corresponding to the illumination condition; and a color conversion unit which performs color conversion from first image data of a photographed image of the stereoscopic subject to colorimetric values, based on the selected stereoscopic color profile.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associate color of a structure is also provided.
Abstract:
A method of capturing data from a patient's dentition with the steps of positioning a first optical sensor relative to patient's dentition, capturing the shape of a tooth in the patient's dentition, independent from capturing the shape, measuring a color at a location on the tooth, and providing a correlation between the location of the color and a coordinate in the captured shape. The invention helps providing a dental restoration at a relatively high optical, mechanical, and geometric quality.
Abstract:
An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image from the tooth and a second spectral range for exciting a fluorescence image from the tooth. A polarizing beamsplitter in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor, wherein the second polarization state is orthogonal to the first polarization state. A first lens in the return path directs image-bearing light from the tooth toward the sensor, and obtains image data from the portion of the light having the second polarization state. A long-pass filter in the return path attenuates light in the second spectral range.
Abstract:
A camera system includes: a database which stores a plurality of stereoscopic color profiles, in which conversion relationships calculated from second image data obtained by photographing a plurality of reference color stereoscopic objects assigned with reference colorimetric values in advance and the reference colorimetric values corresponding to the second image data are associated with a plurality of illumination conditions in photographing; a selection unit which, based on an illumination condition at the time of photographing of a stereoscopic subject, selects a stereoscopic color profile corresponding to the illumination condition; and a color conversion unit which performs color conversion from first image data of a photographed image of the stereoscopic subject to colorimetric values, based on the selected stereoscopic color profile.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associate color of a structure is also provided.
Abstract:
A contactless dental device for determining tooth colors includes illuminating means for illuminating with ambient illumination light a tooth to be examined. At least one color sensor for acquisition and spectral examination of light reflected by the tooth is inventively provided, wherein filtering means are associated with the color sensor for at least partial separation of a signal component originating from the illumination light from the signal component originating from the ambient light. Evaluating means for determining the tooth color based on the signal component originating from the illumination light are disposed downstream of the filtering means.