Abstract:
The present invention provides miniaturized instruments for conducting chemical reactions where control of the reaction temperature is desired or required. Specifically, this invention provides chips and optical systems for performing and monitoring temperature-dependent chemical reactions. The apparatus and methods embodied in the present invention are particularly useful for high-throughput and low-cost amplification of nucleic acids.
Abstract:
The present invention provides miniaturized instruments for conducting chemical reactions where control of the reaction temperature is desired or required. Specifically, this invention provides chips and optical systems for performing and monitoring temperature-dependent chemical reactions. The apparatus and methods embodied in the present invention are particularly useful for high-throughput and low-cost amplification of nucleic acids.
Abstract:
The present invention relates to a photometric device for measuring optical parameters. The invention functions in the ultraviolet light range through use of a monochromator and splits the test light in multiple channels by a rotor assembly, including a mirror.
Abstract:
A fluorescence detection apparatus is provided which comprises a sample holder for holding stationarily sample vessels deployed along a circle line or concentric circle lines having different radiuses, a partition plate connected to a driving means to be rotatable around the center of the circle line or concentric circle lines, an optical means for excitation light and an optical means for fluorescence light fixed respectively to the partition plate to be rotatable in integration therewith, a first light guide constituted of numerous optical fibers, a photosensor, and a light source for generating the excitation light, wherein the partition plate, the optical means for excitation light, and the optical means for fluorescence are integrally rotated, and thereby the fluorescence of the sample arranged along the circle line is successively detected and the detected fluorescence is transmitted to the photosensor. This fluorescence detection apparatus is useful in real-time monitoring of fluorescence signals, and satisfies the requirements of precise temperature control, quick treatment of many samples, high sensitivity, high reliability, low cost, and small size of the apparatus.
Abstract:
The present invention relates to a photometric device for measuring optical parameters. The invention functions in the ultraviolet light range through use of a monochromator and splits the test light in multiple channels by a rotor assembly, including a mirror.
Abstract:
The invention relates to a method and apparatus for temperature compensation in gas analyzer equipment for transient error caused by temperature change. According to the method, a radiation source (1) is used for transmitting electromagnetic radiation through a gas mixture to be analyzed, the intensity of radiation transmitted through the gas mixture being analyzed is detected by means of a thermal detector (4) comprising a radiation detecting sensor element (16) and a reference sensor element (17) for generating an output signal proportional to the concentration of gas being analyzed, the temperature of said thermal detector (4) is measured either directly or indirectly, the measured detector temperature values are recorded as a function of time, and the output signal of the thermal detector (4) is temperature compensated by a correction term dependent on the temperature rate of change (DT) of the thermal detector. According to the invention, the uncorrected output signal V.sub.mass of the thermal detector (4) is temperature compensated by adding a correction term V.sub.comp dependent on the temperature rate of change (DT) of the thermal detector to said output signal.
Abstract:
Method and apparatus for the spectrophotometric assay of aqueous liquids are provided with a pump for aspirating liquids, a filter with two outlets for filling a cell in which the interferometric measurements are made at a temperature between 35 and 50.degree. C. at a maximum fluctuation of 0.2.degree. C., and with a maximum relative humidity of 0.2%. Absorption curves A(f) are determined with respect to a matrix and the concentrations of components to be assayed are calculated by the use of standard equations.
Abstract:
A colorimeter for characterizing the color of an object is placed in an environmentally sealed enclosure for use in industrial environments. In order to maintain an acceptable operating temperature for the colorimeter's electronics and lamp, a heat shield is placed around the lamp to substantially isolate it from the electronics. The heat shield and the environmentally sealed enclosure are made of a highly heat conductive material such as aluminum. The heat shield is thermally coupled to the environmentally sealed enclosure.
Abstract:
An automatic chemical analyzer for the analysis of physiological samples. A scanning monochromatic spectrophotometer may be used to determine the absorbance of the sample under control of a central processing unit. Outputs from one of several ion selective electrodes may also be selected by the system. The information obtained from the measurements is stored in memory or ouputted to output devices. Information about the test parameters may be read from an optical bar code associated with the test kit for the particular chemical analysis.
Abstract:
An apparatus for measuring amylose and/or amylopectin content in rice. A near infrared light beam having its wavelength in a range of from about 1900 nm to about 2500 nm is applied to sample rice (5). A detector (26, 27,28) receives light reflected from and/or transmitted through the sample rice (5), to generate signals representative of luminous intensity of the received light. A memory device (122) has stored therein content conversion coefficients set for the amylose and/or amylopectin. A calculation device (123) calculates the amylose and/or amylopectin content in the sample rice (5), based on the detecting signals from the detector (26,27,28) and the content conversion coefficients stored in the memory device (122). The calculated content is displayed by a display device (126,127).