Plasmonic sensor device and method for surface plasmon resonance spectroscopy

    公开(公告)号:US09752982B2

    公开(公告)日:2017-09-05

    申请号:US14599322

    申请日:2015-01-16

    Inventor: Tim Echtermeyer

    CPC classification number: G01N21/554 G01N21/553 G01N2201/06113

    Abstract: A plasmonic sensor device includes a light source, configured to generate coherent light; a metallic film, at least partially covered on one side by analyte molecules; at least one micromirror that is rotatable about at least one axis of rotation, which is positioned and developed in such a way that the coherent light is able to be guided at an angle of incidence to one side of the metallic film, the angle of incidence being variable by the rotating of the at least one micromirror about the at least one axis of rotation; and a detector configured to determine the intensity of the light guided onto the metallic film and reflected again from there, as a function of the angle of incidence, the coherent light generated by the light source being in such a state that surface plasmons are excitable in the metallic film depending on the angle of incidence.

    Scatterometry system and method for generating non-overlapping and non-truncated diffraction images

    公开(公告)号:US09719920B2

    公开(公告)日:2017-08-01

    申请号:US14497439

    申请日:2014-09-26

    Abstract: Scatterometry measurement systems, illumination configurations and respective methods are provided, which comprise illumination beams that have vertical projections on a target plane comprising both a parallel component and a perpendicular component, with respect to a target measurement direction. The illumination beams propagate at an angle to the plane defined by the measurement direction and a normal to the targets surface and generate diffraction images which are off-center at the imaging pupil plane. The eccentric diffraction images are spatially arranged to avoid overlaps and to correspond to measurement requirements such as spot sizes, number of required diffraction orders and so forth. The illumination beams may be implemented using illumination pupil masks, which provide a simple way to increase scatterometry measurements throughput.

    METHOD AND DEVICE FOR THE RAMAN SPECTROSCOPIC, IN OVO SEX DETERMINATION OF FERTILISED AND INCUBATED BIRDS' EGGS

    公开(公告)号:US20170205353A1

    公开(公告)日:2017-07-20

    申请号:US15317802

    申请日:2015-07-03

    Abstract: The invention relates to a method for the Raman spectroscopic, in ovo sex determination of fertilised and hatched birds' eggs (1), wherein the embryo, including the extra-embryonic structures, can move in the egg, and is not yet attached to the shell at the time of measuring. In addition, the following steps are carried out: monitoring the time course of the hatched egg until forming at least one recognisable blood vessel (21); creating a hole (2) in the shell in the region near to the attached bloody vessel, using a hole-generating unit; finding the blood vessel forming in the egg, using a vision system (19, 13) and a coaxial or lateral illumination with light (10a) in the visible wavelength range; positioning at least one blood vessel in the laser focus of a laser source (3), either by moving the egg or moving a lens (6) of a device (5) for introducing the laser light (3a), and detecting the Raman scattered radiation (7); registering the Raman scattered radiation of the irradiated blood vessel using the device for introducing the laser light, and for detecting the Raman scattered radiation, wherein, during the measuring process, a movement of the blood vessel out of the focus can be avoided by tracking using the vision system; evaluating the Raman scattered radiation in an evaluation unit; determining and displaying the sex of the embryo in the bird's egg.

    Cavity enhanced polarimeter and related methods

    公开(公告)号:US09702812B2

    公开(公告)日:2017-07-11

    申请号:US14706743

    申请日:2015-05-07

    Abstract: A polarimeter for measuring chirality of a material comprising an optical ring cavity comprising a plurality of reflective elements configured to promote bi-directional propagation of a laser beam within the cavity, a laser-emitting device configured to introduce a first input laser beam and a second input laser beam into the ring cavity, and a Faraday rotator and a phase compensator configured to suppress a birefringent background as the first and second laser beams pass through the ring cavity, wherein the plurality of mirrors, Faraday rotator, and phase compensator are configured such that light from the first and second laser beams passes through a chiral material located within the cavity a sufficient number of times for a measurement of optical rotary dispersion (ORD) and circular dichroism (CD) of light transmitted through the chiral material to be obtained. Particular implementations include monolithic ring cavities or microresonators or use of intra-cavity gain media.

Patent Agency Ranking