Abstract:
The metal-core-board reinforcing structure has a metal core board having a metal core and a resin plate having substantially the same extent as that of the metal core board and being fixedly attached to the metal core board substantially parallel to one side of the metal core board and spaced apart therefrom by a predetermined distance.
Abstract:
A sensor may include a substrate having a sensing portion defining a sensor thereon and a circuit mounting portion defining at least one electrically conductive pad that is electrically connected to the sensor. The sensor may be configured to produce a signal indicative of a condition of the patient. An anisotropic medium may be disposed on the circuit mounting portion and may be electrically conductive in a direction through the medium and electrically insulating in directions along the medium. An electrical circuit may be mechanically mounted to the circuit mounting portion of the first substrate via the anisotropic medium with at least one electrically conductive terminal juxtaposed over the at least one electrically conductive pad. The anisotropic medium may establish local electrical contact between the at least one electrically conductive terminal and the at least one electrically conductive pad.
Abstract:
A circuit board damping assembly provides a damping node for a circuit board coupled in spaced relationship to another circuit board or chassis. The circuit board damping assembly includes a chassis or circuit board forming a base member; a circuit board coupled in spaced relationship to the base member; a first attachment member coupled to the base member; a second attachment member coupled to the circuit board; and a connector coupled between the first and second attachment members. The connector may be a wire coupled to the first and second attachment members.
Abstract:
The present invention provides a DC-DC power converter that comprises two or more Printed Wiring Boards (PWB) mounted parallel to one another and without encapsulation. Electronic components can be mounted on both sides of each board. The open design and parallel orientation of the PWBs allow airflow over components mounted on the PWBs. The PWBs are preferable made of FR-4 with copper foils, with one thicker board being comprised of more copper layers and the other boards comprised of less copper layers. In the preferred embodiment, the power processing elements are housed in the thicker PWB, while the thinner boards house the control circuitry.
Abstract:
A stackable chip assembly is disclosed, as are many different embodiments relating to same. The chip assembly preferably includes at least two substrates with components mounted on each. The substrates are preferably situated with respect to one another such that components on one substrate extend towards the other substrate and vice versa. The components of each substrate preferably extend between each other. In addition various connections between the substrates are disclosed, as well as methods of constructing such chip assemblies.
Abstract:
A reception apparatus (3) which can realize a compact size thereof includes: a tuner circuit portion (5); a digital demodulating portion (6) that converts a signal from the tuner circuit portion into a digital signal; and a digital circuit portion (7) that converts a digital signal from the digital demodulating portion into a digital video signal and digital audio signal, and the reception apparatus is characterized by that a first sub circuit board (30) on which the digital demodulating portion is mounted and a second sub circuit board (40) on which the tuner circuit portion is mounted are stacked on a main circuit board (20) on which the digital circuit portion is mounted, in this order, via solder balls (50, 60), so that the main circuit board, the first sub circuit board, and the second sub circuit board are connected to each other via the solder balls.
Abstract:
A flexible printed circuit (FPC) onto which an antenna has been formed is electrically connected to a printed circuit board (PCB) by sandwiching the FPC between the PCB and a resilient biasing member that is held in position relative to the PCB by a frame or retaining member. The biasing member may be a soft, flexible material that operates across a broad temperature range.
Abstract:
An elastic printed board is provided so that stress applied by the silicon gel is absorbed by the printed board. Further, the printed board is formed to be so narrow that the stress may be escaped. On the other hand, the wires on which a high voltage is applied are patterned on respective printed boards. This serves to prevent discharge through the surface of the same printed board served as current passage. This design makes it possible to hermetically close the power module, prevent intrusion of moisture or contamination as well as displacement, transformation and crack of the cover plate.
Abstract:
A stacked mounting structure includes a first substrate, a second substrate, and an intermediate substrate which has a space accommodating therein components to be mounted. A first contact (connecting) terminal and a second contact (connecting) terminal are formed on the first substrate and the second substrate, and have a wire which is formed on a side surface of the intermediate substrate. By formation of the intermediate substrate to be on an inner side than an edge surface of the substrates, a part of the two contact terminals respectively are exposed. One end of the wire is connected to an exposed portion of the first contact terminal, and the other end of the wire is connected to an exposed portion of the second contact terminal.
Abstract:
A circuit board processing system includes a wash tank configured to contain cleaning fluid, and a positioning subsystem configured to immerse a set of circuit boards into the wash tank. The system further includes a flow control subsystem having (i) a first set of nozzles disposed within the wash tank, (ii) a second set of nozzles disposed within the wash tank, and (iii) a controller. The controller is configured to direct the cleaning fluid through the first set of nozzles to provide a flow of the cleaning fluid in a first direction relative to the set of circuit boards. The controller is further configured to direct the cleaning fluid through a second set of nozzles to provide a flow of the cleaning fluid in a second direction relative to the set of circuit boards after providing the flow of the cleaning fluid in the first direction.