Abstract:
A wiring board is provided. The wiring board includes: a resin substrate having a through-hole therethrough; metal foil patterns formed on the resin substrate; and a first wiring layer formed on the metal foil patterns and on an inner surface of the through-hole, wherein the first wiring layer includes: a first power feeding layer; and a first plated layer laminated on the first power feeding layer; a resin member filled in the through-hole and between adjacent wiring patterns of the first wiring layer, wherein an end surface of the resin member is flush with a surface of the first wiring layer; and a second wiring layer formed on the surface of the first wiring layer and formed to cover an end surface of the through-hole, wherein the second wiring layer includes: a second power feeding layer; and a second plated layer laminated on the second power feeding layer.
Abstract:
An object of the present invention is to provide a multilayered printed circuit board having a short wiring distance of the conductor circuits, wide option of the design of the conductor circuits and additionally excellent in reliability since cracking scarcely takes place in the interlaminar resin insulating layers in the vicinity of via-holes. The present invention is a multilayered printed circuit board comprising: a conductor circuit and an interlaminar resin insulating layer serially formed on a substrate in alternate fashion and in repetition, wherein a connection of the conductor circuits through the interlaminar resin insulating layers is performed by a via-hole, wherein via-holes in different level layers among the via-holes are formed so as to form a stack-via structure, and wherein at least one of the land diameters of the above-mentioned via-holes in different level layers having the stack via structure is different from the land diameters of other via-holes.
Abstract:
An electronic circuit unit includes a multi-layer substrate in which high frequency circuits are provided on two different layers and a ground layer is formed between the two layers, and grounding lands connected to peripheral conductive members through connection bars formed on a plurality of layers of the multi-layer substrate. The grounding lands are connected to each other through a via hole and conducted to the ground layer, and the connection bars protruding radially outward from at least two grounding lands provided on different layers are arranged in different directions with respect to a circumferential direction such that the connection bars do not overlap each other along a thickness direction of the multi-layer substrate.
Abstract:
A method is disclosed for fabricating a PCB so that is can easily be determined if a via in the PCB has not been counterbored to a desired depth. A PCB fabricated according to the method also is disclosed.
Abstract:
A system and method for testing size of vias reads a component group from a storage system and reads a via size of each via in the component group. If the via size of a via accords with a standard size corresponding to the component group, the via is determined as a qualified via. If the via size of a via does not accord with the standard size, the via is determined as an unqualified via. The unqualified via is highlighted on a printed circuit board (PCB) design map displayed on a display.
Abstract:
A high frequency and wide band impedance matching via is provided, applicable to multi-layer printed circuit boards, for example. The multi-layer circuit board may include several signal transmission traces, several ground layers, signal transmission vias and ground vias. The signal transmission traces and the ground layers may be sited on different circuit layers, and each signal transmission trace may be opposite to one of the ground layers. The signal transmission vias may be connected between the signal transmission traces. The ground vias may be connected between the ground layers. The ground vias may be opposite to the signal transmission vias, and the ground vias corresponding to the signal transmission vias may be sited to stabilize the characteristic impedance of the transmission traces.
Abstract:
According to one of the invention, a circuit board comprises a conductive layer. The conductive layer includes a first land portion, a second land portion apart from the first land portion in a plan view, and a line portion connecting the first land portion and the second land portion to each other. The line portion includes lead portions through which a current is to flow and an opening portion arranged between the lead portions. The opening portion penetrates the conductive layer in a thickness direction.
Abstract:
A multilayer circuit board assembly includes one or more radio frequency (RF) interconnects between different circuit layers on different circuit boards which make up the circuit board assembly. The RF interconnects can include one or more RF matching pads which provide a mechanism for matching impedance characteristics of RF stubs to provide the RF interconnects having desired insertion loss and impedance characteristics over a desired RF operating frequency band. The RF matching pads allow the manufacture of circuit boards having RF interconnects without the need to perform any back drill and back fill operation to remove stub portions of the RF interconnects in the multilayer circuit board assembly.
Abstract:
A process for forming a circuit structure includes providing a first composite-layer structure at first. A second composite-layer structure is then provided. The first composite-layer structure, a second dielectric layer and the second composite-layer structure are pressed so that a second circuit pattern and an independent via pad are embedded in the second dielectric layer, and the second dielectric layer is connected to the first dielectric layer. A first carrier substrate and a second carrier substrate are removed to expose a first circuit pattern and the second circuit pattern. At least one first opening that passes through the second dielectric layer and exposes the independent via pad is formed, and the first opening is filled with a conductive material to form a second conductive via that connects the independent via pad and a second via pad.
Abstract:
A multilayer high-frequency circuit board includes a signal line, ground layers, and an interlayer circuit. A signal line where a high-frequency signal flows is formed in the signal line layer. The ground layers are laminated on both sides of the signal line layer, each of which is grounded. The interlayer circuit is provided in the signal line layer and includes a ground connecting portion connected to the ground layers and a signal line connecting portion connected to the signal line. One of the signal line connecting portion and the ground connecting portion surrounds an outer periphery of the other of the signal line connecting portion and the ground connecting portion concentrically with the one being separated from the outer periphery of the other along the signal line layer. An inner periphery of the one and the outer periphery of the other have a similar shape excluding a complete circle.