Abstract:
A selective segment via plating process for manufacturing a circuit board selectively interconnects inner conductive layers as separate segments within the same via. Plating resist is plugged into an inner core through hole and then stripped off after an electroless plating process. Stripping of the electroless plating on the plating resist results in a plating discontinuity on the via wall. In a subsequent electroplating process, the inner core layer can not be plated due to the plating discontinuity. The resulting circuit board structure has separate electrically interconnected segments within the via.
Abstract:
Circuit having a first printed circuit board and a second printed circuit board. In the circuit, the printed circuit boards spaced apart from one another by means of an air gap are mechanically connected together by at least one power semiconductor.
Abstract:
A method of manufacturing a wiring board includes: forming an outer through hole in a core substrate; filling the outer through hole with an insulation resin; forming a first conductive layer on a surface of the insulation resin at a portion where a core connecting via is formed; forming a land around the first conductive layer; laminating the wiring layer on the core substrate after the forming of the first conductive layer and the forming of the land; forming an inner through hole having a smaller diameter than that of the outer through hole and penetrating through the core substrate and the wiring layer so as to penetrate through the insulation resin; and coating a first conductive film on an inner wall surface of the inner through hole, in which the core substrate and the first conductive film are electrically connected through the first conductive layer and the land.
Abstract:
A process for fabricating a multi-layer circuit assembly is provided. The process includes (a) providing a substrate at least one area of which comprises a plurality of vias area(s) having a via density of 500 to 10,000 holes/square inch (75 to 1550 holes/square centimeter); (b) applying a dielectric coating onto all exposed surfaces of the substrate to form a conformal coating thereon; (c) removing the dielectric coating in a predetermined pattern to expose sections of the substrate; (d) applying a layer of metal to all surfaces to form metallized vias through and/or to the electrically conductive core; (e) applying a resist to the metal layer to form a photosensitive layer thereon; (f) imaging resist in predetermined locations; (g) developing resist to uncover selected areas of the metal layer; and (h) etching uncovered areas of metal to form an electrical circuit pattern connected by the metallized vias.
Abstract:
A low impedance, low crosstalk disk drive suspension circuit has multiple traces carrying a first polarity of a differential signal, interleaved with multiple traces carrying the second polarity of a differential signal. Each pair of conductors consisting of a trace of the first polarity and a trace of the second polarity may cross over each other at multiple crossover points. The crossover connections may utilize a second layer of copper trace conductors over the first and main layer, or alternatively the crossover connections may utilize an isolated portion of the suspension substrate.
Abstract:
A substrate for suspension comprises a metallic substrate, an insulating layer formed on the metallic substrate, having an opening for grounding terminal, and a grounding conductor formed on the insulating layer. A grounding-terminal-forming material is placed in the opening for grounding terminal to form a grounding terminal that connects the metallic substrate and the grounding conductor. The grounding conductor does not surround a portion of the circumference of the opening for grounding terminal.
Abstract:
A wired circuit board has a metal supporting board, an insulating layer formed on the metal supporting board, a conductive pattern formed on the insulating layer and having a pair of wires arranged in spaced-apart relation, and a semiconductive layer formed on the insulating layer and electrically connected to the metal supporting board and the conductive pattern. The conductive pattern has a first region in which a distance between the pair of wires is small and a second region in which the distance between the pair of wires is larger than that in the first region. The semiconductive layer is provided in the second region.
Abstract:
The insulation base side of single-sided FPC is turned to the die side, and the mounting surface side of ground circuit is turned to the upper side, and the FPC is placed on die (a). When the portion of ground circuit where the conduction is realized and metal reinforcing plate are punched by punch of which the clearance dimension is made to be 50 to 95% of the thickness of the material to be punched, hole sagging will be formed (b). The insulation base 1 side is turned up, electrically conductive adhesive and metal reinforcing plate are laminated in this order, heating pressing is performed with the press apparatus for metal reinforcing plate to be laminated (c). Thereby, laminated FPC is formed (d). At this time, since electrically conductive adhesive is injected into hole sagging by press pressing, the electrical connection of metal reinforcing plate and ground circuit can be attained by the interlaminar conduction by means of electrically conductive adhesive, and there is also no residual air.
Abstract:
A semiconductor module includes a multilayer substrate. The multilayer substrate includes a first metal layer and a first ceramic layer over the first metal layer. An edge of the first ceramic layer extends beyond an edge of the first metal layer. The multilayer substrate includes a second metal layer over the first ceramic layer and a second ceramic layer over the second metal layer. An edge of the second ceramic layer extends beyond an edge of the second metal layer. The multilayer substrate includes a third metal layer over the second ceramic layer.
Abstract:
A multi-layered interconnect structure and method of formation. In a first embodiment, first and second liquid crystal polymer (LCP) dielectric layers are directly bonded, respectively, to first and second opposing surface of a thermally conductive layer, with no extrinsic adhesive material bonding the thermally conductive layer with either the first or second LCP dielectric layer. In a second embodiment, first and second 2S1P substructures are directly bonded, respectively, to first and second opposing surfaces of a LCP dielectric joining layer, with no extrinsic adhesive material bonding the LCP dielectric joining layer with either the first or second 2S1P substructures.