Abstract:
A composite is provided, comprising a substrate and a film on the substrate. The film has an RMS surface roughness of 25 nm to 500 nm, a film coverage of 25% to 60%, a surface energy of less than70 dyne/cm; and a durability of 10 to 5000 microNewtons. Depending on the particular environment in which the film is to be used, a durability of 10 to 500 microNewtons may be preferred. A film thickness 3 to 100 times the RMS surface roughness of the film is preferred.
Abstract:
An electronic device with a waterproof structure includes a housing structure, a printed circuit board and a protective layer. The housing structure includes a receptacle, a first opening and a second opening. The printed circuit board is disposed within the receptacle and includes plural electronic components and electrical trace patterns thereon. The protective layer is formed on at least a portion of the electronic components and the electrical trace patterns to protect the printed circuit board from moisture attack.
Abstract:
An electrical device comprising an electronic component mounted to a surface of a printed circuit board, a ground connection on said surface, and electromagnetic interference (EMI) shielding. The EMI shielding includes an electrical insulator coating the electronic component, the insulator contacting the surface, and a conductive layer covering the electrical insulator, and contacting the electrical insulator and the ground connection.
Abstract:
According to an embodiment of the invention the discrete or integrated electronic components are encapsulated, each in a package, for example a plastic one; the packages are then mounted on a printed circuit board, for example an epoxy one. The components and board as a whole are covered with a relatively thick first layer consisting of an organic compound and ensuring a levelling function, followed by a second layer such as an inorganic metal compound, the function of which is to ensure the hermetic sealing of the whole.
Abstract:
An encapsulated electronic component having an integral heat diffuser. The heat producing electronic component (10) is mounted on a substrate carrier (12) and a layer of encapsulant material (16) covers the component. A layer of thermally conductive material (18) is applied over the encapsulant material, and then a second layer of encapsulant material (20) is applied over the thermally conductive material. The heat generated by the component is distributed throughout the thermally conductive material, thereby eliminating the hot spot over the component, resulting in a substantially lower surface temperature.
Abstract:
An electronic device comprises a housing made of a polycarbonate resin, and a novel double-sided printed circuit board. The printed circuit board has one side embedded in the housing, and the other side exposed to the interior of the housing. A plurality of refractory electronic components are mounted onto one side of the printed circuit board and include a resistor and a capacitor. A plurality of lower refractory electronic components are mounted onto the other side of the housing and include a semiconductor integrated circuit, and a transformer. Preferably, an insulating layer is applied to cover the one side of the printed circuit board and the refractory electronic components. Also, a metal layer is applied to cover the insulating layer and the inner surface of the housing.
Abstract:
Related operations are performed on workpieces, e.g., coating and curing circuit boards, of different types in random order in assembly line fashion on a rotary table of an apparatus under programmed control. The table is rotated stepwise to move successive sections thereof from a load-unload station at which the respective workpieces are loaded and unloaded in random order, to a sensing station at which the type and orientation of the workpiece is sensed, next to an initial work station at which initial work, e.g., coating, is performed on the workpiece in dependence upon its type and orientation previously sensed at the sensing station, then to a subsequent work station at which related subsequent work is performed on the workpiece, e.g., curing of the coating, and in turn back to the load-unload station to complete a cycle. The workpiece is either changed in orientation on the table section for a repeat cycle to perform further work thereon or is replaced by another workpiece in random order.
Abstract:
A solution composition of a polyimide resin type curable resin having imide and alkoxysilyl groups is prepared by reacting a polyimide with a silicon compound in an organic solvent. The solution can be cured through relatively mild heating into coatings having enhanced substrate adherence and solvent resistance and thus suitable as protective coatings on electronic parts.
Abstract:
A composition and method for removing conforming coatings such as polyurethane or epoxy from printed circuit boards is disclosed. The composition comprises separate base and activator components which are mixed to form the coating remover. The base component comprises methylene chloride or toluene, or a mixture thereof, preferably together with a thickening agent. In general, the activator component comprises (a) from about 75 to about 85 parts methylene chloride or toluene, or a mixture thereof, (b) about 7 to about 25 parts lower alkyl alcohol, and (c) about 2 to about 8 parts acetone or methylethylketone. For epoxy conformal coatings, the activator component preferably comprises 85 parts of (a): about 7 to about 15 parts of (b); and about 2 to about 6 parts of (c). The activator component for removing polyurethane conformal coatings preferably comprises 75 parts of (a), about 15 to about 25 parts of (b); about 2 to about 8 parts of (c). The base component is usually mixed with the activator component in a ratio of from 1:1 to 10:1, depending on the thickness of the coating to be removed. The composition is used by combining the base component with the activator component, treating a conformal coating on a printed circuit board by applying the coating remover thereto, and removing the treated conformal coating. Ultraviolet light accelerates the reaction between the conformal coating and the composition of the present invention.
Abstract:
A process for masking an electronic module with a masking tape having an imbedded wire utilized as a cutting edge. The wire is adhered along the edge of the masking tape and the tape is applied to the module so that the wire separates the area to be coated from the area to be coating free. A conformal coating is then applied to the module. After the conformal coating has dried the wire cutting edge is pulled from the tape so as to cut a smooth edge through the conformal coating. The tape is then removed leaving the area underneath free of the coating.