Abstract:
A method of forming a microelectronic device structure comprises coiling a portion of a wire up and around at least one sidewall of a structure protruding from a substrate. At least one interface between an upper region of the structure and an upper region of the coiled portion of the wire is welded to form a fused region between the structure and the wire.
Abstract:
A high-frequency module includes a lower base member having a recess part formed in an upper face thereof, and having a base metal part formed on a lower face thereof that is to be grounded, an upper substrate disposed inside the recess part of the lower base member. The high frequency module also includes a semiconductor device and a first ground metal part connected to the base metal part and disposed in the lower base member. The upper substrate has a first through hole formed therethrough at a position where the first ground metal part is situated, and the semiconductor device is placed on the first ground metal part in the first through hole.
Abstract:
Embodiments of the present disclosure relate to the field of electronics and, in particular, to a multi-layer printed circuit board and a method for fabricating the same. The circuit board is able to avoid the problem that signal transmission performance is affected by a plated hole. The multi-layer printed circuit board includes at least two layers of core plates that are adhered, where a circuit mechanical part is disposed on the core plates, a via is also provided on the core plates, and a metal column is embedded in the via, where one end of the metal column is connected to a corresponding position on an antenna feeder circuit mechanical part disposed on the core plate, and the other end is connected to a corresponding position on an antenna feeder circuit mechanical part disposed on an adjacent layer of the core plate. The method is used for fabricating a multi-layer printed circuit board.
Abstract:
Disclosed is a printed circuit board including an insulating layer, a circuit layer formed on a lower surface of the insulating layer, and a metal post contacting the circuit layer and extending from the lower surface to an upper surface of the insulating layer. The printed circuit board is able to prevent shorts while components are mounted by forming a metal post to have a secured height tolerance to connect with a die and to be in a caved shape into the board.
Abstract:
A substrate may include a body having a first surface and a second surface opposite to each other, at least one first wiring pattern disposed on the first surface of the body to include a bonding finger, an upper insulating pattern disposed on the first surface of the body to cover the overall surface of the at least one first wiring pattern except the bonding finger, and a second wiring pattern disposed on the second surface of the body. The substrate may include a lower insulating pattern disposed on the second surface of the body to cover the second wiring pattern, and a first via electrode penetrating the body from the first surface to the second surface and coupling the at least one first wiring pattern to the second wiring pattern. The body may include a first film and the upper and lower insulating patterns may include second films.
Abstract:
An electrical assembly is disclosed in which two flexible printed circuits are electrically joined. This allows greater lengths of flexible printed circuits to be provided, for example for gas turbine engine harnesses. Each flexible printed circuit has a terminating region having electrically conductive through holes that are connected to respective electrical tracks of the flexible printed circuit. The terminating regions are adjacent each other in the electrical assembly, and an electrically conductive pin is passed through the aligned through holes, then permanently bonded in position, for example by welding. This results in a robust, reliable connection of two flexible printed circuits.
Abstract:
The invention relates to a conductor track unit, in particular for a motor vehicle. The conductor track unit is provided with conductor tracks which are embedded in an electrically insulating material. The conductor tracks are, in particular completely, surrounded by the electrically insulating material and are therefore not accessible from the outside. Electrical connections are electrically connected to the conductor tracks. The electrical connections are accessible from the outside, and therefore can be electrically connected to electrical contacts of electrical or electronic components such as a switch, detector, electronic radio component, integrated circuit, electronic chip, electronic control device or motor, for example by soldering. The conductor tracks and electrical connections are different components which are therefore initially independent of one another and can be produced independently dependently of one another. A particularly robust yet delicate conductor track unit can be provided in this way.
Abstract:
A printed circuit board which avoids the melding of closely adjacent solders includes a top surface, a number of electronic elements and a number of solders. The top surface includes a plurality of copper clad areas. Each copper clad area includes a head area and a neck area. The neck area is positioned on same side of the head area. The neck area includes two edges extended from a fringe of the head area and a terminal point. The two edges intersect at the terminal point. The electronic elements are positioned at the head area. Each solder includes a soldering portion and a tip portion. The soldering portion is attached on the head area and surrounds the electronic element. The tip portion is attached on the neck area. A fringe of the solder is same as the fringe of the copper clad area.
Abstract:
A low-profile passive-on-package is provided that includes a plurality of recesses that receive corresponding interconnects. Because of the receipt of the interconnects in the recesses, the passive-on-package has a height that is less than a sum of a thickness for the substrate and an interconnect height or diameter.
Abstract:
A control system may include a plurality of terminal boards. Each of the plurality of terminal boards may at least include a power pin. The definition of the power pin on at least one of the plurality of terminal boards may be different from the definition of the power pin on another one of the plurality of terminal boards. Thus, if the at least one of the plurality of terminal boards is connected to a wrong input/output module, the input/output module will not get a process power supplied via the power pin on the terminal board. Therefore, a wrong input/output signal will not be transferred, and the input/output module will not be damaged even if a higher process voltage is provided by a wrong terminal board.