Abstract:
An electric driving device and an electric power steering device. An electric driving device includes a motor and an electronic control unit that controls rotation of the motor. The electronic control unit includes a first circuit board, a second circuit board, a second housing, a lid, and an inter-board connector. The second circuit board includes a control circuit that controls an electric current supplied to a transistor of the first circuit board. The second housing accommodates the second circuit board and has a first through hole passing therethrough in the axial direction. The lid covers the second housing. The inter-board connector connects the second circuit board disposed on the anti-load side of the second housing to the first circuit board disposed on the load side of the second housing. The inter-board connector is disposed in the first through hole.
Abstract:
To downsize a power smoothing capacitor substrate unit for opening/closing modules configured to convert a low-voltage DC power to AC power to drive a three-phase AC motor. A plurality of unit capacitors (101) being a conductive polymer aluminum electrolytic capacitor are connected between a positive-side first conductive plate (10P0) connected to a positive-side power supply terminal (125P) and a negative-side second conductive plate (10N) connected to a negative-side power supply terminal (124N), and three or more capacitor rows are arranged for each of three pairs of divided power supply terminal blocks (130B) connected to the opening/closing modules (90B) and one or more capacitor rows are arranged between the terminal blocks. Accordingly, ripple currents in a large number of capacitors connected in parallel to each other are equalized to prevent a temperature increase in each capacitor.
Abstract:
An electronic assembly including a cooling device comprises a cooling plate equipped, on its upper face, with a plurality of pin-fins; a first printed circuit board including at least one heat-generating zone bearing against the lower face of the cooling plate; each pin including a blowing means comprising a hub equipped with blades, the blades being arranged axially along each pin so as to be able to rotate about the pin, thus creating a flow of air for cooling the pins.
Abstract:
A gimbal and a method for winding a flexible cable on a gimbal are provided. The gimbal includes a first motor and a second motor connected with each other. The flexible cable includes a connection unit and a connection end connected with each other, and the connection end is extended from the connection unit. The gimbal winding method includes winding the connection unit on the first motor while allowing the connection end to be electrically connected with the second motor.
Abstract:
A semiconductor package is provided, including a substrate having a top surface, a bottom surface opposing the top surface, a via communicating the top surface with the bottom surface, and a stator set formed by circuits; an axial tube axially installed in the via of the substrate; a plurality of electronic components mounted on the top surface of the substrate and electrically connected to the substrate; an encapsulant formed on the top surface of the substrate for encapsulating the electronic components and the axial tube; and an impeller axially coupled to the axial tube via the bottom surface of the substrate. In the semiconductor package, the stator set is formed in the substrate by a patterning process. Therefore, the thickness of the semiconductor package is reduced significantly.
Abstract:
An electronic component mounting substrate includes an electronic component mounted on a surface of a substrate, an electrode portion disposed on the surface of the substrate and electrically connected to the electronic component, a lead wire connected to the electrode portion, and an encapsulation resin configured to encapsulate a part of the lead wire, the electronic component, and the electrode portion. A surface of at least the part of the lead wire encapsulated by the encapsulation resin and the surface of the substrate are coated with a deposited film.
Abstract:
An electronic component has a support member, an SAW element which is mounted on the support member with a space S therebetween and which has a facing surface which faces the support member, and a resin portion which covers the SAW element and which is provided so as to seal the space S. The SAW element has a piezoelectric substrate, an IDT provided on the facing surface of the piezoelectric board, an wiring (an outer wiring) which is provided on the facing surface of the piezoelectric board and extends from the IDT toward the periphery side of the piezoelectric board, and a dam member which is adjacent to a lateral edge portion of the wiring and which is provided locally relative to the circumferential direction which surrounds the IDT.
Abstract:
A semiconductor package is provided, including a substrate having a top surface, a bottom surface opposing the top surface, a via communicating the top surface with the bottom surface, and a stator set formed by circuits; an axial tube axially installed in the via of the substrate; a plurality of electronic components mounted on the top surface of the substrate and electrically connected to the substrate; an encapsulant formed on the top surface of the substrate for encapsulating the electronic components and the axial tube; and an impeller axially coupled to the axial tube via the bottom surface of the substrate. In the semiconductor package, the stator set is formed in the substrate by a patterning process. Therefore, the thickness of the semiconductor package is reduced significantly.
Abstract:
A vibrating device for portable electronic device includes a frame, a main circuit board, a motor and a secondary circuit board. The frame defines a recess and a receiving hole. The main circuit board is fixed in the recess of the frame. The motor is fixed in the receiving hole of the frame. The secondary circuit board electronically connects the main circuit board and the motor.
Abstract:
To reduce the number of parts composing a control circuit and to reduce an area occupied by a printed circuit board on which the parts are to be mounted, in an axial flow fan motor in which a shaft is rotatably mounted by bearings and an impeller is mounted on the shaft, the control circuit is in the form of an arcuate shape having an area corresponding to 30% to 60% of an total area of the boss portion and is installed into a printed circuit board having a diameter smaller than that of the boss portion. Also, by utilizing the functions installed into the integrated circuit of the control circuit, the parts provided on the circuit board may be dispensed with. As a result, a space which corresponds to that of the printed circuit board is generated in an interior of a casing to thereby enhance the cooling performance and to reduce the number of the parts and the manufacture steps.