Abstract:
Products and assemblies are provided for socketably receiving elongate interconnection elements, such as spring contact elements, extending from electronic components, such as semiconductor devices. Socket substrates are provided with capture pads for receiving ends of elongate interconnection elements extending from electronic components. Various capture pad configurations are disclosed. Connections to external devices are provided via conductive traces adjacent the surface of the socket substrate. The socket substrate may be supported by a support substrate. In a particularly preferred embodiment the capture pads are formed directly on a primary substrate such as a printed circuit board.
Abstract:
Provided is a circuit device that allows a plurality of circuit boards, which are stacked each other and arranged in a case member, to be sealed with a resin effectively, and a method of manufacturing the same. In a hybrid integrated circuit device, a first circuit board is overlaid with the second circuit board and both of the boards are fitted into the case member. A first circuit element is arranged on the upper surface of the first circuit board and a second circuit element is arranged on the upper surface of the second circuit board. Furthermore, an opening is provided in a side wall part of the case member, and an internal space of the case member communicates with the outside through this opening. Accordingly, in the resin sealing step, a sealing resin can be injected into the internal space of the case member from the outside through this opening.
Abstract:
Provided is a circuit device capable of increasing the packaging density and preventing the thermal interference between circuit elements to be incorporated. In a hybrid integrated circuit device, a first circuit board and a second circuit board are fitted into a case member in a way that the first circuit board is overlaid with the second circuit board. A first circuit element is arranged on the upper surface of the first circuit board and a second circuit element is arranged on the upper surface of the second circuit board. Furthermore, inside the case member, provided is a hollow portion that is not filled with a sealing resin. Such a configuration prevents the second circuit element, which is a microcomputer, from operating unstably due to a heat generated in the first circuit element, which is a power transistor, for example.
Abstract:
A method of forming a pin adapted to be used in a PGA joint, and a flattening head used to perform the method. The method includes: providing a pin blank; and forming a pin head by coining an end of the pin blank using a flattening head thereby forming the pin, the pin having a pin stem and the pin head attached to the pin stem, the flattening head being shaped to impart a topography to an underside surface to the pin head that is non-smooth during coining, the topography being adapted to allow gases to escape from a pin-attach solder disposed adjacent to the underside surface.
Abstract:
A wiring substrate with a lead pin is formed by bonding lead pins to electrode pads formed on a wiring substrate through conductive materials. In the lead pin, a conic protrusion part whose side surface is formed in a concave surface is formed in the end face side opposed to the electrode pad of a head part formed in one end of a shaft part. The lead pin is bonded to the electrode pad in a state in which the conductive material extends to the back surface side of a head part beyond a flange part of the head part and reaches the shaft part of the lead pin.
Abstract:
A wiring substrate with lead pins formed by bonding lead pins to electrode pads formed on a wiring substrate through conductive materials is provided and in the lead pin, the end face side bonded as opposed to the electrode pad of a head part formed in one end of a shaft part is formed in a conic protrusion part and also a vertex angle of the conic protrusion part is set in an angle range of 110° to 140°, and the conductive material is interposed between the conic protrusion part and the electrode pad and also extends to a flat part of the head part and reaches an outer surface of the shaft part and the lead pin is bonded to the electrode pad.
Abstract:
A microelectronic package substrate and an electrically conductive pin. The substrates includes: a die-side surface adapted to receive a die thereon; a PCB-side surface adapted to be mechanically and electrically bonded to a PCB; an array of land pads on the PCB-side surface, the land pads defining anchoring recesses therein; an array of electrically conductive pins electrically and mechanically bonded to respective ones of the land pads, the pins having anchoring elements thereon mated with corresponding ones of the anchoring recesses of the land pads, the anchoring elements and anchoring recesses being configured such that a mating thereof inhibits a tilting of the pins on the land pads; and a plurality of pin-attach solder joints mechanically and electrically bonding the pins to corresponding ones of the land pads.
Abstract:
A semiconductor product is constructed of a wiring substrate in which pads for pin connection are formed, and a substrate with pins in which pins are disposed. The substrate with the pins is formed so that one end of the pin is exposed to one surface of a resin substrate formed by resin molding and the other end of the pin extends from the other surface of the resin substrate and one end of the pin is bonded to a pad of the wiring substrate through a conductive material.
Abstract:
In a stacked package in which a plurality of packages having semiconductor elements mounted on substrates are stacked, while being electrically connected together, by use of connection sections, wherein the connection sections are formed from pillar-like members and solder joint sections and the upper package is supported on the lower package by pillar-like members.
Abstract:
A component mounting method of a multilayer printed wiring board includes a plurality of solder bumps to mount electronic components formed on both of or either of the front and back thereof, wherein when the solder bumps are formed of any of first, second, third and fourth solders, the first, second, third and fourth solders have different melting points and the melting points of the first, second, third and fourth solders are arranged as the melting point of the first solder, the melting point of the second solder, the melting point of the third solder and the melting point of the fourth solder in order of high melting point and the first, second, third and fourth solders are sequentially used to solder electronic components and the like in order of high melting point. Further, in that case, it is preferable that the solder bump having large volume should be soldered earlier than other solder bumps. This multilayer printed wiring board is easy to mount components, excellent in work efficiency or easy in reworkable process and a mounting method of such multilayer printed wiring board is also provided.