Abstract:
Contact structures exhibiting resilience or compliance are formed. The contact structures may be formed on a sacrificial substrate. The contact structures are attached to an array of electrical connections on a substrate to form a contact assembly. The electrical connections on the substrate may be metallic pads.
Abstract:
A through hole 2 in a circuit board 1 and to be joined to a lead 5 in a surface mounting component 6 is prepared from a material such as nickel, and palladium having a thermal conductivity equal to or less than 100 W/m.K, the circuit board 1 involving a alloy layer composed of at least a member selected from elements of solder 8, a pad 7, and the lead 5 in a solder joined site of the lead 5 and the pad 7, whereby a quantity of heat transmitted to the joined site via the through hole 2 is reduced at the time when wave-soldering is applied to the back of the circuit board 1 after the surface mounting component 6 was mounted, so that the joined site is maintained at a temperature equal to or less than a melting point of the alloy layer, and hence, exfoliation in an interface of the joined site is prevented, and reliability in the joint of the lead 5 and the pad 7 is elevated.
Abstract:
An electrical contact for use in an electrical connector, includes a contact body made of metal and having a contact head, a contact tail, and an anti-wicking region disposed between the contact head and the contact tail arranged to prevent wicking of a fusible material past the anti-wicking region in a direction toward the contact head. The anti-wicking region is defined by one of a laser-ablated portion, a laser marking material, a UV marking material, and an ink that is permanently disposed on the contact body.
Abstract:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.
Abstract:
A contact structure can comprise a core structure on a substrate and over coat material on the core structure. The over coat material can be harder or have a greater yield strength than the material of the core structure. The core structure can be formed by attaching a wire to the substrate and spooling the wire out from a spool. While spooling the wire out, the spool can be moved to impart a desired shape to the wire. The wire can be severed from the spool and over coated. As an alternative, the wire need not be over coated. The substrate can be an electronic device, such as a semiconductor die.
Abstract:
An interconnection apparatus and a method of forming an interconnection apparatus. Contact structures are attached to or formed on a first substrate. The first substrate is attached to a second substrate, which is larger than the first substrate. Multiple such first substrates may be attached to the second substrate in order to create an array of contact structures. Each contact structure may be elongate and resilient and may comprise a core that is over coated with a material that imparts desired structural properties to the contact structure.
Abstract:
A method of producing an electronic device by connecting a lead of a semiconductor device with an electrode of a circuit board to form a bonded structure. In the bonded structure, a lead-free Sn—Ag—Bi alloy solder is applied to an electrode through an Sn—Bi alloy layer. The Sn—Bi alloy, preferably, comprises 1 to 20 wt % Bi in order to obtain good wettability of the solder. In order to obtain desirable bonding characteristics having higher reliability in the invention, a copper layer is provided under the Sn—Bi alloy layer thereby obtaining an enough bonding strength.
Abstract:
A circuit board mounted connector is equipped with an insulative housing, which holds a plurality of rows of contacts and is mounted on a circuit board. Each contact has a contact portion, for contacting another connector, and a leg portion, which is connected to the circuit board. Each leg portion has an extending portion that extends from a rear wall of the insulative housing; a flexible portion, which is formed continuously with the extending portions; and a linear portion that extends in a direction substantially perpendicular to the circuit board from the flexible portion and is connected to an aperture of the circuit board. Of the plurality of rows of contacts, at least the row closest to the circuit board has extending portions that extend away from the circuit board, up to the flexible portions. The linear portions of each of the leg portions are partially tin plated.
Abstract:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at lease a portion of the conductive contact terminal immediately adjacent the first intimate bond.
Abstract:
In a soldering method for soldering an electronic component including a palladium or palladium alloy layer formed on a surface of the electronic component and also including a soldering lead terminal onto a printed wiring board including a soldering land and plated through hole, a solder layer containing tin and zinc as main components is formed on the surfaces of the land through hole by a HAL treatment. The lead terminal is inserted and mounted in the through hole. The printed wiring board is brought into contact with jet flows of a solder containing tin and zinc as the main components to thereby supply a solder to the land and through hole.