Abstract:
A method of sensing a process utilizing a sensing apparatus consisting of more than one diode laser having select lasing frequencies, a multiplexer optically coupled to the outputs of the diode lasers with the multiplexer being further optically coupled to a pitch side optical fiber. Multiplexed laser light is transmitted through the pitch side optical fiber to a pitch optic operatively associated with a process chamber which may be a combustion chamber or the boiler of a coal or gas fired power plant. The pitch optic is oriented to project multiplexed laser output through the process chamber. Also operatively oriented with the process chamber is a catch optic in optical communication with the pitch optic to receive the multiplexed laser output projected through the process chamber. The catch optic is optically coupled to an optical fiber which transmits the multiplexed laser output to a demultiplexer. The demultiplexer demultiplexes the laser light and optically couples the select lasing frequencies of light to a detector with the detector being sensitive to one of the select lasing frequencies.
Abstract:
A diode laser spectroscopy gas sensing apparatus having a diode laser with a select lasing frequency, a pitch optic coupled to the diode laser with the pitch optic being operatively associated with a process chamber and oriented to project laser light along a projection beam through the process chamber. This embodiment additionally includes a catch optic in optical communication with the pitch optic to receive the laser light projected through the process chamber and an optical fiber optically coupled to the catch optic. In addition, the catch optic is operatively associated with a catch side alignment mechanism which provides for the alignment of the catch optic with respect to the projection beam to increase a quantity of laser light received by the catch optic from the pitch optic and coupled to the optical fiber and a detector sensitive to the select lasing frequency optically coupled to the optical fiber. The catch side alignment mechanism may consist of means to tilt the catch optic along a first axis and a second axis orthogonal to the first axis with both the first and second axes being approximately orthogonal to the projection beam.
Abstract:
A pitch side optical system for use in diode laser spectroscopy consisting of more than one diode laser having select lasing frequencies with each diode laser being coupled to an end of a distinct input optical fiber. The pitch side optical system further consists of a multiplexer optically coupled to the other end of less than all of the input optical fibers with the multiplexer outputting multiplexed laser light to a pitch side optical fiber. The pitch side optical system further consists of a coupler optically coupled to the far end of the pitch side optical fiber and the far end of an unmultiplexed input optical fiber with the coupler combining the multiplexed laser light and the unmultiplexed laser light and outputting the combined light to a transmission optical fiber. Typically, the coupler is located near the combustion process. The pitch side optical system further consists of a pitch optic coupled to the transmission optical fiber. Typically, all optical fibers used in the pitch side optical system are single mode optical fibers.
Abstract:
Pulse laser light transmitted through a laser light transmission optical fiber to an optical system unit passes through a distribution reflecting mirror and is condensed by a condenser lens group. The condenser lens group irradiates the condensed laser light onto an analysis object. The fluorescence emitted as a result of the irradiation of the pulse laser light onto the analysis object is condensed by the condenser lens group and is reflected by the distribution reflecting mirror. The optical system unit transmits the fluorescence reflected by the distribution reflecting mirror through an fluorescence transmission optical fiber to a fluorescence measuring instrument. The fluorescence measuring instrument determines the quantity of elements included in the analysis object on the basis of the fluorescence.
Abstract:
An apparatus (10) measures a spectral distribution of a printed product (12) produced with a printing device. The apparatus (10) has an illuminating source (20) for illuminating the printed product (12), an optoelectronic measuring means (32) for measurer the reflectance value of a section of the spectrum of the light (26) reflected from the printed product (12), an optical disperser (28) for dispersing the wavelengths of the reflected light (26), and a light entry gap plane that is definitive for the disperser (28). The light entry gap plane that is definitive for the disperser (28) is created by the surface of the printed product (12) to be examined.
Abstract:
A fiberscope device is disclosed which is suitable for video imaging, laser Raman spectroscopy and laser Raman spectroscopic (i.e. chemical) imaging. The fiberscope design minimizes fiber background interference arising from the laser delivery fiber optic and the coherent fiber optic light gathering bundle while maintaining high light throughput efficiency through the use of integrated spectral filters. In the fiberscope design, the laser delivery fiber optic is offset from the coherent fiber optic light gathering bundle. The laser delivery field is captured entirely by the light gathering field of view of the coherent fiber bundle. The fiberscope incorporates spectral filter optical elements that provide environmental insensitivity, particularly to temperature and moisture. The fiberscope is suited to the analysis of a wide range of condensed phase materials (solids and liquids), including the analysis of biological materials such as breast tissue lesions and arterial plaques, in such a manner to delineate abnormal from normal tissues.
Abstract:
A spectroscopic system according to the present invention 10 comprises: an optical fiber bundle 12 whose emitting end 12a is arranged in a vertical direction; a slit 16 which is arranged so as to oppose the emitting end 12a of the optical fiber bundle 12; spectroscopic element arrangement means 20 which can switchably arrange either a first diffraction grating 23 in which grooves extending along the vertical direction are arranged in a horizontal direction at a predetermined groove density, or a second diffraction grating 24 in which grooves extending along the vertical direction are arranged in the horizontal direction at a groove density larger than that of the first diffraction grating 23, on an optical path of light which is emitted from the emitting end 12a of the optical fiber bundle 12 and passes through the slit 16; and a photomultiplier tube 30 in which a plurality of anodes 53 extending along the vertical direction are arranged in the horizontal direction.
Abstract:
A wavemeter and method for measuring bandwidth for a high repetition rate gas discharge laser having an output laser bean comprising a pulsed output of greater than or equal to 15 mJ per pulse, sub-nanometer bandwidth tuning range pulses having a femptometer bandwidth precision and tens of femptometers bandwidth accuracy range, for measuring bandwidth on a pulse to pulse basis at pulse repetition rates of 4000Hz and above, is disclosed which may comprise a focusing lens having a focal length; an optical interferometer creating an interference fringe pattern; an optical detection means positioned at the focal length from the focusing lens; and a bandwidth calculator calculating bandwidth from the position of interference fringes in the interference fringe pattern incident on the optical detection means, defining a DID and a DOOD, the respective distances between a pair of first fringe borders and between a pair of second fringe borders in the interference pattern on an axis of the interference pattern, and according to the formula Δλ=λ0 [DOD2−DID2]/[8f2−D02], where λ0 is an assumed constant wavelength and D0=(DOD−DID)/2, and f is the focal length. The optical detector may be a photodiode array. The wavemember may have an optical interferometer having a slit function; the slit function and the focal length being selected to deliver to the optical detector the two innermost fringes of the optical interference ring pattern. The optical detector may comprise an array of pixels each having a height and width and the array having a total width; and an aperture at the optical input to the optical interferometer may selectively input to the optical interferometer a portion of a beam of light sufficient for the output of the etalon to illuminate the optical detector over the height of each respective pixel height and the total width. The optical interferometer may comprise an etalon having a slit function of 3 pm or less and a finesses of 25 or greater; and the focal length may be 1.5 meters. A second stage diffuser may be placed between the first stage diffuser and the etalon delivering a narrow cone of light to the etalon, and an aperture between the second stage diffuser and the etalon may deliver to the etalon a thin strip of the narrow cone of light.
Abstract:
An imaging spectrometer includes an all-reflective objective module that receives an image input and produces an objective module output at an exit slit, and an all-reflective collimating-and-imaging module that receives the objective module output as an objective-end input and produces a collimating-end output, wherein the collimating-and-imaging module comprises a reflective triplet. A dispersive element receives the collimating-end output and produces a dispersive-end input into the collimating-and-imaging module that is reflected through the collimating-and-imaging module to produce a spectral-image-end output. An imaging detector receives the spectral-image-end output of the collimating-and-imaging module. The objective module may be a three-mirror anastigmat having an integral corrector mirror therein, or an all-reflective, relayed optical system comprising a set of five powered mirrors whose powers sum to substantially zero. The collimating-and-imaging module may be optimized to minimize spectral smile.
Abstract:
A spectroscopic system according to the present invention 10 comprises: an optical fiber bundle 12 whose emitting end 12a is arranged in a vertical direction; a slit 16 which is arranged so as to oppose the emitting end 12a of the optical fiber bundle 12; spectroscopic element arrangement means 20 which can switchably arrange either a first diffraction grating 23 in which grooves extending along the vertical direction are arranged in a horizontal direction at a predetermined groove density, or a second diffraction grating 24 in which grooves extending along the vertical direction are arranged in the horizontal direction at a groove density larger than that of the first diffraction grating 23, on an optical path of light which is emitted from the emitting end 12a of the optical fiber bundle 12 and passes through the slit 16; and a photomultiplier tube 30 in which a plurality of anodes 53 extending along the vertical direction are arranged in the horizontal direction.