Abstract:
A printed circuit board includes a substrate, a plurality of metal wires, and a solder mask layer. The substrate includes a first area and a second area. The second area surrounds and does not overlap the first area. The metal wires are disposed on the first area of the substrate. One end of one of two adjacent metal wires faces one end of the other one of the two adjacent metal wires. The solder mask layer is formed on the second area of the substrate. In the present invention, a short circuit or an open circuit between the two adjacent metal wires is directly formed during processes of manufacturing the printed circuit board, whereby a jumper is not required so as to reduce a layout area, and cost of a manual post-welding treatment can be reduced.
Abstract:
A system and method for supporting an electronic component attached to a circuit board. Solder paste is applied to a solder pad underneath and aligned with a non-wetting region of an electronic component to form a support formed of solder to prevent electronic component lead flexing. The amount of solder for forming the support and the size of the solder pad are selected to bring the support into contact with, or in close proximity to, the non-wetting region.
Abstract:
Methods, systems, and apparatuses for integrated circuit package substrates, integrated circuit packages, and processes for assembling the same, are provided. A substrate for a flip chip integrated circuit package includes a substrate body having opposing first and second surfaces. A solder mask layer covers at least a portion of the first surface of the substrate body. First and second electrically conductive features are formed on the substrate body. The first electrically conductive feature is a portion of a first electrical signal net, and the second electrically conductive feature is a portion of a second electrical signal net. The first and second electrically conductive features are configured to be selectively electrically coupled together by application of an electrically conductive material. The electrically conductive material may be a conductive epoxy, a jumper, a solder paste, a solder ball, or a solder bump that couples a flip chip die to the substrate.
Abstract:
A circuit board includes a board, a first conductive land over the board, a second conductive land over the board, a resist extending over the board, and a conductive material within the opening. The second conductive land is distanced from the first conductive land. The resist has an opening that extends over at leat a portion of the first conductive land, at least a portion of the second conductive land, and at least a portion of an intervening region of the board. The intervening region extends between the first and second conductive lands. The conductive material extends over the at least a portion of the intervening region, the at least a portion of the first conductive land, and the at least a portion of the second conductive land.
Abstract:
The present invention provides a number of techniques for laminating and interconnecting multiple substrates to form a multilayer package or other circuit component. A solder bump may be formed on the conductive pad of at least one of two or more substrates. The solder bump preferably is formed from an application of solder paste to the conductive pad(s). Adhesive films may be positioned between the surfaces of the substrates having the conductive pads, where the adhesive films include apertures located substantially over the conductive pads such that the conductive pads and/or solder bumps confront each other through the aperture. The two or more substrates then may be pressed together to mechanically bond the two or more substrates via the adhesive films. The solder bump(s) may be reflowed during or after the lamination to create a solder segment that provides an electrical connection between the conductive pads through the aperture in the adhesive films.
Abstract:
From the individual small areas of a conductor pattern arranged on the back side of a circuit board, there are individually extended leader patterns, which are midway led by through holes to the surface side of the circuit board. The individual leader patterns led to the surface side are connected with a terminal portion on the low-voltage side through jumper pads. The desired small areas are enabled to function by shorting the jumper pads with solder. The individual small areas are constituted to have a capacity of 1 pF, when caused to function, and they have such a capacity as a pattern capacitor as is proportional to the number of the shorted jumper pads.
Abstract:
A circuit board includes a board, a first conductive pad provided on the board, a second conductive pad provided with a first distance from the first conductive pad. A mask extends over the board and has an opening that extends over at least a part of the first conductive pad, at least a part of the second conductive pad, and at least a part of an intervening region of the board between the first and second conductive pads. A conductive material is provided in the opening, and extends over the at least a part of the first conductive pad, the at least a part of the intervening region, and the at least a part of the second conductive pad.
Abstract:
The circuit board with a heat dissipating structure is provided. A first grounding conductor layer is formed on a first surface of a substrate. A first insulting layer is formed on the first grounding conductor layer and defines a number of circuit element pin openings and a plurality of heat dissipating openings therein so that the first grounding conductor layer is exposed from the circuit element pin openings and the heat dissipating openings. A number of solder balls are disposed in the circuit element pin openings and contacted with the first grounding conductor layer. A number of heat dissipating structures are disposed in the heat dissipating openings and contacted with the first grounding conductor layer. The heat dissipating structures and the solder balls have an identical material. The method for manufacturing the circuit board is also provided.
Abstract:
A circuit board includes a substrate, a circuit pattern and a through electrode. The circuit pattern is disposed on one side of the substrate in a thickness direction thereof. The through electrode is filled in a through-hole formed in the substrate with one end connected to the circuit pattern. The circuit pattern and the through electrode each have an area containing a noble metal component (e.g., Au component) and are connected to each other therethrough.
Abstract:
A method of manufacturing a semiconductor device forms a penetrating hole in a substrate so that the penetrating hole extends from a first surface of the substrate to a second surface of the substrate being opposite to the first surface. An internal wall surface of the penetrating hole has a protrusion formed of a material constituting the substrate, the first surface of the substrate being closer to the protrusion than the second surface. A conductive member is formed on the first surface so that the conductive member covers the penetrating hole. A semiconductor chip is mounted on the first surface so that an electrode of the semiconductor chip is electrically connected to the conductive member. An external electrode is provided through the penetrating hole so that the external electrode is electrically connected to the conductive member and the external electrode projects from the second surface of the substrate.