Abstract:
Contact structures exhibiting resilience or compliance are formed. The contact structures may be formed on a sacrificial substrate. The contact structures are attached to an array of electrical connections on a substrate to form a contact assembly. The electrical connections on the substrate may be metallic pads.
Abstract:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.
Abstract:
A contact structure can comprise a core structure on a substrate and over coat material on the core structure. The over coat material can be harder or have a greater yield strength than the material of the core structure. The core structure can be formed by attaching a wire to the substrate and spooling the wire out from a spool. While spooling the wire out, the spool can be moved to impart a desired shape to the wire. The wire can be severed from the spool and over coated. As an alternative, the wire need not be over coated. The substrate can be an electronic device, such as a semiconductor die.
Abstract:
An interconnection apparatus and a method of forming an interconnection apparatus. Contact structures are attached to or formed on a first substrate. The first substrate is attached to a second substrate, which is larger than the first substrate. Multiple such first substrates may be attached to the second substrate in order to create an array of contact structures. Each contact structure may be elongate and resilient and may comprise a core that is over coated with a material that imparts desired structural properties to the contact structure.
Abstract:
A multilayer substrate, comprising a first substrate, a connector and a second substrate, is disclosed. The first substrate has a circuit pattern. The connector, coupling onto the first substrate, has a ring structure, in which a plurality of holes are separated a predetermined distance from one another. The second substrate, coupling onto the second substrate by inserting the connector, has a circuit pattern, which is electrically connected to a circuit pattern formed on the first substrate using the plurality of holes formed on the connector. A multilayer substrate and a method for producing it in accordance with the present invention can shield the EMI generated by a high-speed switching element.
Abstract:
An electronic package and information handling system utilizing same wherein the package substrate includes an internally conductive layer coupled to an external pad to provide reinforced adhesion of the pad to the substrate to substantially prevent cracking, separation, etc. of the pad when the pad has a pin bonded thereto and the package is coupled to an external substrate (e.g., printed circuit board). The reinforced adhesion also prevents pad separation, etc. during periods of package handling, manufacture, etc.
Abstract:
A circuit carrier adapted for a pin grid array (PGA) package is disclosed. The circuit carrier comprises a substrate, at least one pin pad, at least one solder mask layer, at least one solder layer, at least one pin and a fixing layer. The pin pad is disposed over the surface of the substrate. The solder mask layer is disposed over the surface of the substrate, and exposing at least a portion of the pin pad. The solder layer is disposed over the pin pad. One end of the pin connects to the pin pad through the solder layer. The fixing layer is disposed over the solder mask layer, and covering the solder layer and a portion of a side surface of the pin. When the solder layer melts due to a high process temperature, the fixing layer helps to fix the pin to the pin pad.
Abstract:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at lease a portion of the conductive contact terminal immediately adjacent the first intimate bond.
Abstract:
A microprocessor packaging architecture using a modular circuit board assembly that provides power to a microprocessor while also providing for integrated thermal and electromagnetic interference (EMI) is disclosed. The modular circuit board assembly comprises a substrate, having a component mounted thereon, a circuit board, including a circuit for supplying power to the component, and at least one conductive interconnect device disposed between the substrate and the circuit board, the conductive interconnect device configured to electrically couple the circuit to the component.
Abstract:
The present invention relates generally to permanent interconnections between electronic devices, such as integrated circuit packages, chips, wafers and printed circuit boards or substrates, or similar electronic devices. More particularly it relates to high-density electronic devices.The invention describes means and methods that can be used to counteract the undesirable effects of thermal cycling, shock and vibrations and severe environment conditions in general.For leaded devices, the leads are oriented to face the thermal center of the devices and the system they interact with.For leadless devices, the mounting elements are treated or prepared to control the migration of solder along the length of the elements, to ensure that those elements retain their desired flexibility.