Laser energy measuring unit and laser machining apparatus
    151.
    发明申请
    Laser energy measuring unit and laser machining apparatus 有权
    激光能量测量单元和激光加工设备

    公开(公告)号:US20080239300A1

    公开(公告)日:2008-10-02

    申请号:US12071357

    申请日:2008-02-20

    CPC classification number: G01J1/0455 B23K26/705 G01J1/04 G01J1/4257

    Abstract: There is provided a laser energy measuring unit whose laser energy measuring range is widened. The laser energy measuring unit has a filter provided within an optical path of laser to attenuate energy of the laser, a calculating section for measuring the energy of the laser passing through the filter and a condenser lens provided on one side of the filter for condensing the laser. The filter has a shading portion for blocking a center part of the laser beam from transmitting through the filter at position coincident with the center of the laser. The center part of the laser where its energy is large is cut by the shading portion and the calculating section measures the part where its energy is not so large. Thereby, it is possible to widen the laser energy measuring range.

    Abstract translation: 提供了激光能量测量范围扩大的激光能量测量单元。 激光能量测量单元具有设置在激光器的光路内的滤光器,用于衰减激光的能量,用于测量穿过滤光器的激光的能量的计算部分和设置在滤光器一侧的聚光透镜,用于冷凝 激光。 滤光器具有用于阻挡激光束的中心部分的遮蔽部分,以在与激光器的中心重合的位置处透过滤光器。 其能量大的激光器的中心部分被遮光部分切割,并且计算部分测量其能量不是很大的部分。 由此,能够扩大激光能量的测量范围。

    Light measuring apparatus and a method for correcting non-linearity of a light measuring apparatus
    155.
    发明授权
    Light measuring apparatus and a method for correcting non-linearity of a light measuring apparatus 有权
    光测量装置和用于校正光测量装置的非线性的方法

    公开(公告)号:US07286215B2

    公开(公告)日:2007-10-23

    申请号:US10841189

    申请日:2004-05-06

    Applicant: Kenji Imura

    Inventor: Kenji Imura

    Abstract: A correction LED is provided to illuminate a light receiving sensor array, and a calculation controlling circuit calculates correction values at the respective illuminance levels based on sensor output levels expected at the respective illuminance levels and actual sensor output levels while successively turning the correction LED on at a plurality of illuminance levels whose illuminance ratios are at least known, and corrects a sensor output level by the corresponding correction value to obtain a measurement output at the time of an actual measurement. The discontinuity of an input/output characteristic resulting from the switching of gains of an amplifier for amplifying a photocurrent and the non-linearity caused by the saturation of the photoelectrically converting characteristic of the optical sensor and the exponential characteristics of the optical sensor and the amplifier can be corrected without employing a large-scale construction such as a bench. The non-linearity can be highly precisely and efficiently corrected in a measuring apparatus realized as a spectral luminometer or a spectral colorimeter without requiring a special facility.

    Abstract translation: 提供校正LED以照明光接收传感器阵列,并且计算控制电路基于在各个照度水平和实际传感器输出电平处预期的传感器输出电平来计算各照度水平下的校正值,同时依次将校正LED接通 其照度比至少为已知的多个照度水平,并且通过相应的校正值校正传感器输出电平,以获得实际测量时的测量输出。 由用于放大光电流的放大器的增益切换引起的输入/输出特性的不连续性以及由光学传感器的光电转换特性的饱和引起的非线性以及光学传感器和放大器的指数特性 可以在不使用诸如台架的大规模构造的情况下进行校正。 在实现为光谱发光计或光谱色度计的测量装置中,不需要特殊设备,可以高精度和有效地校正非线性。

    Multi-functional calibration system and kit, and their uses for characterizing luminescence measurement systems
    156.
    发明申请
    Multi-functional calibration system and kit, and their uses for characterizing luminescence measurement systems 有权
    多功能校准系统和套件,以及其用于表征发光测量系统的用途

    公开(公告)号:US20070159624A1

    公开(公告)日:2007-07-12

    申请号:US11377593

    申请日:2006-03-15

    CPC classification number: G01N21/6458 G01N21/278 G02B21/0076

    Abstract: The invention relates to a multi-functional calibration system (10) for characterizing luminescence measurement systems, in particular spectrally resolving, wide-field and/or confocal imaging systems, with (a) a baseplate (12), (b) at least one calibration module (24) arranged on the baseplate (12) and including at least one calibration and/or characterization function, and (c) at least one focusing device (20) integrated in the baseplate (12) with a focusing surface (22) for setting a defined measurement beam focus of the luminescence measurement systems to be calibrated, the focusing surface (22) arranged in a common plane with the at least one calibration module (24).

    Abstract translation: 本发明涉及用于表征发光测量系统,特别是光谱分辨,宽场和/或共焦成像系统的多功能校准系统(10),其中(a)底板(12),(b)至少一个 校准模块(24),其布置在所述基板(12)上并且包括至少一个校准和/或表征功能,以及(c)集成在所述基板(12)中的至少一个聚焦装置(20) 用于设置待校准的发光测量系统的定义的测量束聚焦,所述聚焦表面(22)与所述至少一个校准模块(24)布置在公共平面中。

    Calibration tool for an optical measuring device with an optical fiber probe
    157.
    发明授权
    Calibration tool for an optical measuring device with an optical fiber probe 失效
    带有光纤探针的光学测量装置的校准工具

    公开(公告)号:US07227629B2

    公开(公告)日:2007-06-05

    申请号:US11152936

    申请日:2005-06-15

    CPC classification number: G01N21/274 G01N21/27 G01N21/278 G01N21/4795

    Abstract: An optical measurement device calibration tool includes an optical probe suitable for calibrating various optical imaging devices, for example, low coherence reflectometers and optical coherence tomography devices. In a preferred embodiment the calibration tool comprises a container containing a calibration substance with stable optical scattering and absorption properties. The calibration substance includes a gel, paste or grease substance and is covered a protective seal, which is at least partially transparent providing optical contact between the optical probe and the calibration substance. The protective seal is covered with a viscous complementary material. Another protective seal made at least partially removable is placed above the viscous complementary material and may serve as a cover for the container. The calibration tool maintains the advantages of calibration tools using liquids and solid states as calibration substance and is more cost-effective and more convenient for calibrating optical measuring devices such as in medical applications.

    Abstract translation: 光学测量装置校准工具包括适于校准各种光学成像装置的光学探针,例如低相干反射计和光学相干断层摄影装置。 在优选实施例中,校准工具包括容纳具有稳定的光散射和吸收特性的校准物质的容器。 校准物质包括凝胶,糊剂或油脂物质,并被覆盖保护性密封件,该保护性密封件至少部分透明,提供光学探针与校准物质之间的光学接触。 保护性密封件用粘性补充材料覆盖。 至少部分可移除的另一个保护性密封件放置在粘性互补材料上方,并可用作容器的盖子。 该校准工具保持了使用液体和固态作为校准物质的校准工具的优点,并且对于校准诸如医疗应用中的光学测量装置更为经济高效并且更方便。

    Optical wavelength standard and optical wavelength calibration system and method
    158.
    发明授权
    Optical wavelength standard and optical wavelength calibration system and method 失效
    光波长标准和光波长校准系统及方法

    公开(公告)号:US07151597B2

    公开(公告)日:2006-12-19

    申请号:US10729508

    申请日:2003-12-05

    Abstract: The optical wavelength standard comprises a diffraction grating having a diffractive surface, an input arrangement and an output optical arrangement. The input optical arrangement is located to illuminate the diffractive surface of the diffraction grating with incident light at an angle of incidence at which absorption of the incident light at a resonance wavelength generates surface plasmons. The output optical arrangement is located to receive the incident light specularly reflected from the diffractive surface of the diffraction grating as reflected light. The reflected light includes an absorption line at the resonance wavelength. The absorption line provides the wavelength reference. The resonance wavelength is defined by the angle of incidence and the physical characteristics of the diffraction grating. A desired resonance wavelength can be obtained by appropriately defining the angle of incidence and the physical characteristics of the diffraction grating. Moreover, the resonance wavelength can be changed by changing either or both of the angle of incidence and the diffraction grating.

    Abstract translation: 光学波长标准包括具有衍射面的衍射光栅,输入布置和输出光学布置。 输入光学布置被定位成以入射角以入射光照射衍射光栅的衍射表面,入射光在共振波长处的入射光的吸收产生表面等离子体激元。 输出光学布置被定位为接收从衍射光栅的衍射表面镜面反射的入射光作为反射光。 反射光包括在共振波长处的吸收线。 吸收线提供波长参考。 谐振波长由入射角和衍射光栅的物理特性定义。 可以通过适当地限定入射角和衍射光栅的物理特性来获得期望的共振波长。 此外,可以通过改变入射角和衍射光栅中的一个或两个来改变谐振波长。

    Fiber optic sensing device for measuring a physical parameter
    159.
    发明授权
    Fiber optic sensing device for measuring a physical parameter 有权
    用于测量物理参数的光纤传感装置

    公开(公告)号:US07099015B2

    公开(公告)日:2006-08-29

    申请号:US10647176

    申请日:2003-08-25

    Applicant: Ivan Melnyk

    Inventor: Ivan Melnyk

    Abstract: A fiber optic sensing device uses a Fabry-Perot cavity to sense a physical parameter. The cavity modulates the incident polychromatic light. The modulated light is recorded by an optical spectrometer means. The spectrum is analyzed in a signal processing unit which normalizes the spectrum and determines the phase of the modulated signal. The phase, accumulated over whole range of wavelengths, has been used for identification of the physical parameter using a look-up-table. The cavity, the polychromatic light source and the spectroscope means are connected by fiber optic means.

    Abstract translation: 光纤感测装置使用法布里 - 珀罗腔来感测物理参数。 空腔调制入射的多色光。 调制光由光谱仪装置记录。 频谱在信号处理单元中进行分析,该信号处理单元对频谱进行归一化并确定调制信号的相位。 在整个波长范围内累积的相位已被用于使用查找表识别物理参数。 空腔,多色光源和分光装置通过光纤装置连接。

    Specular gloss simulation device, specular gloss simulation method, control program for specular gloss simulation device and storage medium thereof
    160.
    发明申请
    Specular gloss simulation device, specular gloss simulation method, control program for specular gloss simulation device and storage medium thereof 有权
    镜面光泽仿真装置,镜面光泽仿真方法,镜面光泽仿真装置及其存储介质的控制程序

    公开(公告)号:US20060092412A1

    公开(公告)日:2006-05-04

    申请号:US11259166

    申请日:2005-10-27

    CPC classification number: G01N21/57 G01J3/504

    Abstract: The present invention realizes a specular gloss simulation device which can accurately simulate, by using a Bidirectional Reflectance Distribution Function, specular glossiness of an image even if the image has a low density and low gloss. A specular gloss simulation device according to the present invention is for simulating specular glossiness by simulating a specular reflection light amount in each (other) geometry from a luminance measured in a given geometry of a sample having a base material and a colorant material layer formed on the base material. A specular gloss simulation device 100 is provided with a lower layer reflection light component calculating section 111 for calculating a lower layer reflection light component, which is reflected on a base material and travels through and out of a color layer, an internal reflection light component creating section 112 for creating an internal reflection light component, which is reflected from an interior of the colorant material layer, a surface reflection light component creating section 113 for creating a surface reflection light component, which is reflected on a surface of the colorant material layer, and a specular reflection light amount calculating section 114 for obtaining a specular reflection light amount of the sample by adding up the components thus created by each section.

    Abstract translation: 本发明实现了即使图像具有低密度和低光泽度,也可以通过使用双向反射分布函数来精确地模拟图像的镜面光泽度的镜面光泽模拟装置。 根据本发明的镜面光泽模拟装置用于通过从在具有基材和着色剂材料层的样品的给定几何形状中测量的亮度模拟每个(其它)几何中的镜面反射光量来模拟镜面光泽度, 基材。 镜面光泽模拟装置100设置有下层反射光分量计算部111,用于计算反射在基材上并穿过和穿出彩色层的下层反射光分量,产生内反射光分量 用于产生从着色剂材料层的内部反射的内反射光分量的部分112用于产生在着色剂层的表面上反射的表面反射光分量的表面反射光分量产生部分113, 以及镜面反射光量计算部分114,用于通过将由每个部分产生的分量相加来获得样本的镜面反射光量。

Patent Agency Ranking