Abstract:
In an outlet flow control arrangement (1) arrangeable to control a flow of material through an outlet (2) with a predetermined diameter arranged at an end of a pressurized processing container (3), the outlet flow control arrangement (1) comprises an adaptor unit (4) configured so that a cross-section of a flow into the adaptor unit (4) is reduced as compared to a cross-section of the outlet (2), to enable the adaptor unit (4) to control and center a flow of processed material out of the processing container (3) and through the outlet (2) into a discharge pipe (5).
Abstract:
The present disclosure provides an apparatus and methods of use for isolating particles. An example apparatus includes (a) a vessel defining a pressurizable chamber, wherein the vessel includes a distal end and a proximal end, (b) an inlet of the pressurizable chamber at the proximal end of the vessel, (c) a nozzle positioned within the pressurizable chamber, wherein the nozzle includes an inlet tube in fluid communication with the inlet of the pressurizable chamber, wherein the nozzle includes an outlet aperture, wherein the nozzle is adjustable to alter a distance between the proximal end of the vessel and the outlet aperture of the nozzle, and wherein the nozzle is adjustable to alter an angle between a longitudinal axis of the vessel and a longitudinal axis of the nozzle, and (d) an outlet of the pressurizable chamber at the distal end of the vessel.
Abstract:
The present invention relates to a method and an arrangement for pressure and temperature let down of autoclave discharge slurry, in particular in pressure oxidation or high pressure acid leach of metal containing ore. The method of the invention comprises a step of providing autoclave vent gas obtained from the autoclave to the top-entry flash vessel for inducing overpressure to the top-entry flash vessel and preventing boiling of the slurry during the transfer to next top-entry flash vessel. The invention further relates to an autoclave and pressure let-down arrangement adapted for providing autoclave vent gas to one or more top-entry flash vessels.
Abstract:
A gasification facility which uses flammable gas as a carrier medium for air-transporting powder fuel, used as a gasification raw material, to a gasification furnace and which can safely release the flammable gas, exhausted from a fuel feed hopper, to the atmosphere. In the gasification facility using flammable gas as a carrier medium for transporting pulverized coal as powder fuel from a pulverized coal feed hopper (7) to a gasification furnace (11), the flammable gas discharged from the pulverized coal feed hopper (7) is subjected to incineration treatment and then released to the atmosphere, so that safe release to the atmosphere can be implemented.
Abstract:
Disclosed is a hydrothermal synthesis device for continuously preparing an inorganic slurry using a hydrothermal method. The hydrothermal synthesis device includes a mixer to mix at least one precursor solution for preparing an inorganic material, injected via at least one supply tube, to prepare an intermediate slurry, a connection tube provided at a side of the mixer, continuously discharging the prepared intermediate slurry to a reactor, and having an inner surface contacting a precursor solution mixture on which abrasive polishing has been performed, and the reactor performing hydrothermal reaction of the intermediate slurry supplied from the connection tube by receiving a liquid stream heated to supercritical or subcritical conditions using a heat exchanger and connected to the connection tube into which the intermediate slurry prepared from the mixer is introduced and to at least one injection tube into which the heated liquid stream is injected.
Abstract:
A device for synthesising and studying compounds under controlled temperatures and pressures includes: a body delimiting a vacuum chamber including temperature-regulation means and vacuum-application means, and having one or more viewing windows enabling the inside of the chamber to be observed from the outside; temperature-regulation means that are intended for regulating the temperature inside the vacuum chamber; and vacuum-application means that are intended for regulating the pressure in the vacuum chamber; wherein it includes, inside the vacuum chamber, a sealed structure delimiting a sealed chamber having one or more viewing window facing said one or more windows in said body, and at least one pipe that is in fluid communication firstly with the inside of said sealed chamber and secondly with an outlet that is made in the body and provided in order to be connected to one or more sources of gas for synthesising said compound or sample.
Abstract:
Compositions are provided that include having at least 95% by weight of a taxane, or a pharmaceutically acceptable salt thereof, where the particles have a mean bulk density between about 0.050 g/cm3 and about 0.15 g/cm3, and/or a specific surface area (SSA) of at least 18 m2/g, 20 m2/g, 25 m2/g, 30 m2/g, 32 m2/g, 34 m2/g, or 35 m2/g. Methods for making and using such compositions are also provided.
Abstract:
Reactor for the synthesis of melamine from urea, in accordance with the high-pressure non-catalytic process, comprising: a vertical reactor body (1), at least one inlet (2) for the urea melt, a set of heating elements (3), and a central duct (7), said set of heating elements (3) being arranged inside said central duct.
Abstract:
A methodology scales supercritical fluid chromatography (SFC) and/or carbon dioxide based chromatography methods between different system and/or column configurations. The methodology includes measuring an average mobile phase density during a first separation utilizing CO2 as a mo bile phase component and substantially duplicating the average density profile for a second separation. Substantial duplication of the average mobile phase density (e.g., within about 10%, 5%, 2.5%, 1%, 0.5%, 0.1 %, 0.05%) results in chromatography for both system and/or column configurations having similar selectivity and retention factors. Average mobile phase density may be, either measured directly, calculated, or approximated using average pressure or density measurements. The average pressure profile may be used as a close approximation to duplicate average density profiles between separations.