Abstract:
The invention discloses an anti-explosive easy-to-disassemble safe adhesive tape and a manufacturing method thereof. The adhesive tape comprises a flame-retardant, current-conducting, heat-conducting and heat-expansion pressure-sensitive adhesive layer, a flame-retardant, current-conducting, heat-conducting and extensible viscosity-losing layer, a flame-retardant, current-conducting, heat-conducting and heat-expansion pressure-sensitive adhesive layer, and a release material layer which are overlapped in sequence. By adopting the adhesive tape disclosed in the invention, a plurality of battery packs can be combined together to increase the capacity or voltage. If an automobile encounters a collision, the material of the adhesive tape is collided and heated, and then expands instantly in order to effectively separate each battery module, and avoid greater damage.
Abstract:
The purpose of the present invention is to provide an adhesive composition having high heat conductivity and excellent adhesion, in which the dispersibility of a heat-conductive filler is controlled, and in which thermal stress during cooling/heating cycle testing can be alleviated. An adhesive composition containing a soluble polyimide (A), an epoxy resin (B), and a heat-conductive filler (C), the adhesive composition characterized by containing three types of diamine residues having a specific structure, and in that the content of the epoxy resin (B) is 30-100 parts by weight with respect to 100 parts by weight of the soluble polyimide (A).
Abstract:
Provided is a coating for forming a conductive release layer capable of forming a conductive release layer having high adhesion to a film base material, suppressing deterioration in conductivity over time in the air, and having a sufficient releasing property. The coating for forming a conductive release layer of the present invention contains a conductive composite including a π-conjugated conductive polymer and a polyanion, an epoxy compound having an epoxy group, a curable silicone, a polyester resin, and an organic solvent.
Abstract:
A heat-dissipation and shielding structure, including a shielding case, a thermal pad, and a heat sink. The bottom of the shielding case is connected to a circuit board used to carry a heat emitting element, the heat sink is disposed on the top of the shielding case, the top of the shielding case is provided with an opening, the thermal pad runs through the opening, a bottom surface of the thermal pad is attached to the heat emitting element, and a top surface of the thermal pad is attached to the heat sink; and the heat-dissipation and shielding structure further includes a metal spring plate, where the metal spring plate is located on a periphery of the opening and encircles the opening, and the metal spring plate is elastically connected between the shielding case and the heat sink.
Abstract:
Provided is a conductive adhesive tape comprising: a substrate that is formed in a nano-web form having a number of pores by spinning a polymer material by a spinning method; and a conductive adhesive layer that is formed in a non-porous form by directly spinning a conductive adhesive material by a spinning method on one or both surfaces of the substrate, or that is laminated on one or both surfaces of the substrate. Accordingly, thickness of the adhesive tape can be made thin, adhesive strength of the adhesive tape can be enhanced, and the adhesive tape can be precisely attached on even a curved surface. Further, when removing the adhesive tape from components, the adhesive layer can be prevented from remaining on the surface of the components.
Abstract:
The invention provides a composition set comprising: a conductor layer-forming composition comprising a dispersing medium and inorganic particles comprising a metallic oxide; and a conductive adhesive composition comprising a binder and conductive particles having a number average particle size of from 1 nm to 3000 nm.
Abstract:
A semiconductor device connected by an anisotropic conductive film. The anisotropic conductive film includes a composition for an anisotropic conductive film including a first epoxy resin having an exothermic peak temperature of about 80° C. to about 110° C. and a second epoxy resin having an exothermic peak temperature of 120° C. to 200° C., as measured by differential scanning calorimetry (DSC). The first epoxy resin and the second epoxy resin are present in combined amount of about 30 wt % to about 50 wt % based on a total weight of the composition in terms of solid content. The second epoxy resin is present in an amount of about 60 to about 90 parts by weight based on 100 parts by weight of the first and second epoxy resins.
Abstract:
An anisotropic conductive film has a first connection layer and a second connection layer formed on surface of the first connection layer. The first connection layer is a photopolymerized resin layer, and the second connection layer is a thermo- or photo-cationically, anionically, or radically polymerizable resin layer. On the surface of first connection layer on the side of second connection layer, conductive particles for anisotropic conductive connection are arranged in a single layer. A region in which the curing ratio is lower than that of the surface of the first connection layer exists in a direction oblique to the thickness direction of the first connection layer. Alternatively, the curing ratio of a region relatively near another surface of the first connection layer among regions of the first connection layer in the vicinity of the conductive particles is lower than that of the surface of the first connection layer.
Abstract:
An adhesive film, which can be bonded when heat-activated, comprising a) a polymer-metal blend comprising at least one adhesive which can be bonded when heat-activated, and at least one metal component melting in the temperature range from 50° C. to 400° C., and b) at least one fibrous, electrically conductive filler, the filler being present at least partly in the form of a bound fiber network with the metal component.
Abstract:
An anisotropic conductive film has first and second connection layers formed on a first layer surface. The first connection layer is a photopolymerized resin layer, and the second is thermo- or photo-cationically, anionically, or radically polymerizable resin layer. On the surface of the first connection layer on a second connection layer side, conductive particles for anisotropic conductive connection are in a single layer. The first connection layer has fine projections and recesses in a surface. An anisotropic conductive film of another aspect has first, second, and third connection layers layered in sequence. The first layer formed of photo-radically polymerized resin. The second and third layers are formed of thermo-cationically or thermo-anionically polymerizable resin, photo-cationically or photo-anionically polymerizable resin, thermo-radically polymerizable resin, or photo-radically polymerizable resin. On a surface of the first connection layer on a second connection layer side, conductive particles for anisotropic conductive connection are in a single layer.