Abstract:
In a state that the body portion 4 is regulated by inner wall planes 27, 29, 28 of the package 3 so as not to move in parallel or perpendicularly with respect to the rear plane 4b, the spectroscopic module is directly supported by the package 3, thereby when the spectrometer is downsized, the spectroscopic module 2 can be supported securely and also there is provided securely a positional accuracy between the light incident opening 22a of the package 3, the spectroscopic portion 6 of the spectroscopic module 2 and the light detecting element 7. Further, the lead 23 is buried into the package 3 to give derivation and support by the lead deriving portion 26, thereby the lead deriving portion 26 in itself of the package 3 is allowed to act as a base when wire bonding is conducted to electrically connect the lead 23 with the light detecting element 7, thus preventing breakage and deviation of the spectroscopic module 2.
Abstract:
The present invention relates to a solid-state based light source, a corresponding circuitry and a method of emitting light, including one or more light source elements for generating light, a first sensor for receiving light emitted by the light source elements and ambient light and for generating a first sensor signal (S1) representing the received light, a second sensor for only receiving ambient light and for generating a second sensor signal (S2) representing the received ambient light. Moreover, the solid-state based light source comprises a control unit for receiving the first and the second sensor signals (S1, S2) and for generating control signals (Sc) for controlling the light source elements, based on the difference between the first and the second sensor signals (S1, S2), to compensate for the influence of the ambient light.
Abstract:
A color measurement instrument and color measurement method for measuring a color of a surface are provided. The instrument includes a plurality of independently switchable light sources characterized by differing spectral ranges, and a plurality of light guides configured to receive light from the light sources and to direct the received light to a light emitting portion of the instrument for illuminating the surface. The instrument further includes a first light detector configured to receive a portion of the light reflected from the surface. The first light detector is a wideband light detector.
Abstract:
This invention relates to a control system for controlling the light output of a LED luminaire comprising a single color LED group consisting of at least one LED. The control system comprises a spectral filter and a photodetector, which thus receives spectrally filtered light from the LED group. The photodetector generates a response signal which is applied to a control device. The control device controls the light output of said LED group at least partially on the basis of the response signal. The control system further includes an incidence angle limiting device arranged to limit the angle of incidence of the LED light received by said filter.
Abstract:
The multispectral filter for an image detection device comprises a prismatic plate (85) comprising a first internal face (86) and a second external face (87), the first and the second faces (86, 87) being inclined with respect to one another by an angle β, and comprises at least two different spectral bands (91, 92, 93, 94) deposited either on the first or the second face (86, 87) of the prismatic plate (85), the various spectral bands (91, 92, 93, 94) being spaced a predetermined distance (D) apart.Application to multispectral imagers, in particular to Off Axis imagers.This filter allows the suppression of the ghost images (or spurious echoes) generated at the focal plane of a multispectral imager.
Abstract:
An improved optical sensor and methods for measuring the presence of various materials or constituents in a fluid sample uses reactive material(s) in a fluid environment. The reactive materials have optical properties that change in the presence of a target material that may be present in the environment. An optical emitter generates light that is directed to the reactive materials, and one or more optical detectors receive reflected light from one or more interfaces in the optical path between the emitter and the detector(s), one or more of the interfaces having a reactive material. The reactive material(s), emitter(s), and detector(s) are selected based on the desired target material to be sensed.
Abstract:
To provide a highly-reliable spectroscopy module. In a spectroscopy module 1, a light passing hole 5b through which a light L1 advancing to a spectroscopic portion 4 passes is formed in a light detecting element 5. Therefore, it is possible to prevent the relative positional relationship between the light passing hole 5b and a light detecting portion 5a of the light detecting element 5 from deviating. Moreover, the light to be measured L1 advancing to the spectroscopic portion 4 via the light passing hole 5b and the diffracted lights L2 advancing to the light detecting portion 5a from the spectroscopic portion 4 pass through a void formed between the light detecting element 5 and the substrate 2 by an opening portion 10a of a wiring substrate 10. Thereby, it is possible to prevent a situation in which the light to be measured L1 and the diffracted lights L2 are scattered or the like due to a resin adhesive 16 or the like interposed between the light detecting element 5 and the substrate 2. Therefore, it is possible to prevent generation of stray light. Therefore, according to the spectroscopy module 1, it is possible to improve the reliability.
Abstract:
A spectrometer 1A is made up of: an optical body 10 within which a light separation path is set along which an object light to be separated propagates; a light entry slit 16 through which the object light enters; a diffraction grating 17 for spectrally separating the incident object light; and a photodiode array 18 for detecting the object light separated by the diffraction grating 17. As an optical member for optically interconnecting the optical body 10 and the photodiode array 18, an optical connection member 20 is provided, with its light entry surface 21 for the separated object light in contact with the upper surface 11 of the optical body 10, with its light exit surface 22 in contact with the photodiode array 18, with the light exit surface 22 tilted by a specified angle relative to the light entry surface 21. Thus, the spectrometer capable of bringing about sufficient accuracy of placing optical elements in a simple constitution while bringing down cost is realized.
Abstract:
A method for providing an intensity or brightness measurement using a digital image-capturing device comprising: selecting a target area within a field of view of the image-capturing device, the target area containing pixels; measuring the intensity or brightness of pixels in a target area; accumulating the intensity or brightness values of the pixels in the target area; and determining a pixel value representative of the intensity or brightness of the pixels in the target area. A device for making color measurements comprising an image-capture device, a processor or logic device, and a memory location for accumulating color data, and the processor or logic device is programmed to perform color measurements by accumulating the data for pixels located in the target area in memory, and determining a representative color value.
Abstract:
A spectroscope includes a diffraction grating having a plurality of ruled parallel lines; and a plurality of spectroscopic paths, each of which has a collimator for collimating incident light, emits the collimated light to the diffraction grating, and emits return light, which returns from the diffraction grating, through a slit provided on the path. In the spectroscope, measured light is emitted through the plurality of spectroscopic paths so as to extract light which is included in the measured light and has a predetermined wavelength; and the collimators of the spectroscopic paths are arranged so that irradiation areas of light emitted from the collimators are offset from each other at least in a direction along the ruled parallel lines. The collimators of the spectroscopic paths may be arranged so that incident angles of light emitted from the collimators coincide with each other.