Abstract:
Excitation light of a selected wavelength from an excitation monochromator is directed along the long axis of a flow cell containing the sample to be analyzed, generating fluorescence. An emission monochromator is positioned at right angles to the plane of the excitation monochromator and receives the fluorescence from the flow cell utilizing optical components positioned such that the entrance slit of the emission monochromator is aligned with the long axis of the emission window. The intensity of the output from the flow cell is further maximized by positioning a retro-reflecting mirror at the end of the flow channel to effectively double the path-length of the excitation beam, and a reflecting surface on the side of the cell opposite the emission window to increase the collection efficiency and thereby increase the sensitivity of the detector.
Abstract:
A spectral measurement device comprising an entrance aperture for receiving an electromagnetic energy and a mask located at the entrance aperture in the form of a two-dimensional encodement pattern. An optical element conditions the electromagnetic energy received from the mask for presentation to the spectral dispersion element and the and a spectral dispersion element disperses the electromagnetic energy in one or more dimensions. Additionally, the optical element conditions the dispersed electromagnetic energy onto an array of detector elements.
Abstract:
An optical measurement device capable of improving optical spectrum measurement accuracy without the need to structurally decrease a slit width. A diffraction grating for dispersing measurement light into respective different wavelengths is rotated in a given direction to produce diffracted light of selected wavelengths. A focusing lens converges the diffracted light to produce a converged beam. A slit control section varies the slit width at a constant scan speed to open or close the slit, thereby varying the passing bandwidth for the converged beam. A light receiving/measuring section receives the light passed through the slit, obtains a level function indicative of the power level of the received light that varies with change in optical frequency, and differentiates the level function by the scan speed to reproduce the spectrum profile of the measurement light.
Abstract:
An optical spectrometer and/or a method of optical spectroscopy is described herein. One exemplary spectrometer includes a planar spectral filter, a dispersion system, and a detector array having at least two dimensions. The planar spectral filter filters incident light to generate a plurality of wavelength dependent spatial patterns. The dispersion system disperses the spatial patterns along at least one dimension in a wavelength dependent fashion onto the detector array. As a result, spatial patterns corresponding to different wavelengths are centered at different locations on the detector array. The dispersed spatial patterns superimpose at the detector array in an offset but overlapping relationship, creating an asymmetric image that facilitates the spectral analysis of a wide range of light sources, including diffuse or spectrally complex light sources.
Abstract:
A diffractive optical element device for use in spectroscopy, where broadband light is emitted from a light source (31) towards the optical element (24) and from there is transmitted to at least one detector (29; 29′). The optical element has a plurality of diffractive dispersively focusing patterns, preferably partly integrated into each other, whose respective centers are two-dimensionally offset relative to each other in order to produce a plurality of spectra (25–28), where at least two are separate, but offset relative to each other and/or partly overlapping. In an alternative embodiment, the optical element consists of either one diffractive optical element (60) that is related to a wavelength and produces a spectrum, or at least two diffractive optical elements (60, 61) which are related to respective wavelengths and which produce at least two mutually partly overlapping spectra to give a composite spectrum. Means are provided on or in connection with the optical element in order to produce in said spectrum at least one indication of upper and/or lower wavelength value.
Abstract:
A measuring apparatus for measuring a spectrum of extreme ultraviolet light that diverges from a divergent center point of an extreme ultraviolet light source, includes a spectrum measuring unit that includes a spectrometer and a detector that has a spatial resolution in a spectrum forming direction of the spectrometer, and a drive mechanism that makes the spectrum measuring unit movable relative to the divergent center point.
Abstract:
An optical system has a broadband source and a chirped Bragg grating etalon. In operation, the broadband source provides a broadband optical signal. The chirped Bragg grating etalon responds to the broadband optical signal, for providing a chirped Bragg grating etalon optical signal having a precise set of the optical reference signals. The chirped Bragg grating etalon may include a pair of chirped Bragg gratings. The precise set of the optical reference signals is determined by the spacing of the chirped Bragg gratings of the chirped Bragg grating etalon. The precise set of the optical reference signals includes a series of peaks covering most of a source spectral width of the broad optical source signal with the power at the beginning and end of the spectrum passed unaffected by the chirped Bragg grating etalon due to the limited bandwidth thereof.
Abstract:
A spectral measurement device comprising an entrance aperture for receiving an electromagnetic energy and a mask located at the entrance aperture in the form of a two-dimensional encodement pattern. An optical element conditions the electromagnetic energy received from the mask for presentation to the spectral dispersion element and the and a spectral dispersion element disperses the electromagnetic energy in one or more dimensions. Additionally, the optical element conditions the dispersed electromagnetic energy onto an array of detector elements.
Abstract:
In optical filter systems and optical transmission systems, an optical filter compresses data into and/or derives data from a light signal. The filter way weight an incident light signal by wavelength over a predetermined wavelength range according to a predetermined function so that the filter performs the dot product of the light signal and the function.