Abstract:
An electronic package and method of formation. A thermally conductive layer having first and second opposing surfaces is provided. A first dielectric layer is laminated under pressurization to the first opposing surface of the thermally conductive layer, at a temperature between a minimum temperature T1MIN and a maximum temperature T1MAX. T1MAX constrains the ductility of the first dielectric layer to be at least D1 following the laminating. T1MAX depends on D1 and on a first dielectric material comprised by the first dielectric layer. A second dielectric layer is laminated under pressurization to the second opposing surface of the thermally conductive layer, at a temperature between a minimum temperature T2MIN and a maximum temperature T2MAX. T2MAX constrains the ductility of the second dielectric layer to be at least D2 following the laminating. T2MAX depends on D2 and on a second dielectric material comprised by the second dielectric layer.
Abstract translation:电子封装和形成方法。 提供具有第一和第二相对表面的导热层。 第一电介质层在加压下被层压在导热层的第一相对表面上,温度在最低温度T 1 1MIN和最高温度T 1MAX之间。 在层压之后,T 1MAX 3将第一介电层的延展性约束至少为D 1。 T 1MAX取决于D 1和在由第一介电层组成的第一电介质材料上。 在加压下将第二电介质层在导热层的第二相对表面上,在最低温度T 2 M 2 N 2和最大温度T 2 MAX之间的温度下层压。 在层压之后,T 2MAX 2将第二介电层的延展性约束为至少D 2。 T 2MAX取决于D 2和在由第二介电层组成的第二电介质材料上。
Abstract:
A jig for holding and conveyance having a weak-adherence adhesive pattern on a plate surface on which a printed circuit board having a conductive portion and a non-conductive portion on the surface of an insulating substrate is placed and held. The weak-adherence adhesive pattern is formed by being restricted to a position corresponding to non-conductive portion. A jig for holding and conveyance is also disclosed which has a fluorine-based resin layer on a plate surface on which a printed circuit board having a conductive pattern on the surface of an insulating substrate is placed and held. On the fluorine-based resin layer, the printed circuit board is held so that the conductor pattern surface of the printed circuit board is approximately parallel to the plate surface. A jig for holding and conveyance can be provided which is capable of reducing manufacturing defects in a step of connecting electronic components or the like on the surface of a thin printed circuit board or in a step of manufacturing the printed circuit board, and which is capable of low-cost production.
Abstract:
An electroconductive paste composition characterized in that an electroconductive powder with a mean grain size of 1 μm or less and a copolymer binder composed of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride are dispersed in a solvent. The present invention provides an electroconductive paste. composition that can be cured at low temperatures and can be endowed with low resistivity as a result of using a conventional mixing technique without the need for particularly expensive materials or techniques.
Abstract:
The present invention is a polymeric composite comprising a polyimide component and a fluoropolymer component derived from a micro powder. The fluoropolymer micro powder has a melt point between 250 and 375° C. The fluoropolymer micro powder has an average particle size between 20 and 5000 nanometers (5.0 microns).The polyimide component and the fluoropolymer component are inter-mixed at a high dispersion level where the fluoropolymer component is present in a weight ratio from 10 to 60 percent. The polymeric composite of these two components is particularly useful in the form of a thin film used in high-speed digital circuitry or high signal integrity for low loss of a digital signal. The film can also be used as a wire wrap, or as a coverlay or base film substrate for flexible circuitry laminates.
Abstract:
A liquid crystalline composite comprising a liquid crystalline polymer, particulate filler, and fibrous web. Further disclosed is a method for forming the liquid crystalline polymer composite. The liquid crystalline polymer composite is useful in circuit materials, circuits, and multi-layer circuits, economical to make, and has excellent flame retardant properties.
Abstract:
An electronic component includes a circuit board assembly having a thin polymer sheet having no electronic function located within the assembly, the circuit board assembly and the thin polymer sheet encapsulated in a potting material. A method of preventing damage to circuit boards in an electronic component encapsulated in potting material due to cracks in the potting material includes a) providing plural circuit boards for assembly into the component; b) during assembly, inserting a thin polymer film at least between adjacent ones of the plural circuit boards, said polymer film having no electronic function; c) completing the assembly of the component; and d) encapsulating the component in a potting material.
Abstract:
An electronic package and method of making the electronic package is provided. A layer of dielectric material is positioned on a first surface of a substrate which includes a plurality of conductive contacts. At least one through hole is formed in the layer of dielectric material in alignment with at least one of the plurality of conductive contacts. A conductive material is positioned in the at least one through hole substantially filling the through hole. At least one conductive member is positioned on the conductive material in the through hole and in electrical contact with the conductive material. The electronic package improves field operating life of an assembly which includes a semiconductor chip attached to a second surface of the substrate and a printed wiring board attached to the conductive members.
Abstract:
The invention provides fluororesin fiber paper excellent in adhesion to a copper foil, heat resistance, chemical resistance, low water absorption and electric insulation and capable of being used as a substrate of a printed board suitable for use in high frequency, of which a low dielectric loss is required. The fluororesin fiber paper is a porous sheet obtained by forming a slurry comprising fluororesin fiber into a sheet by a wet paper making method and sintering the resultant sheet and has an average pore diameter of 0.5 to 50 μm and a maximum pore diameter of at most 250 μm. A copper-clad laminate for printed board is produced by laminating the fluororesin fiber paper and a copper foil having a ten point mean height of surface roughness profile (Rz) of 0.5 to 8.0 μm on each other by means of vacuum hot pressing.
Abstract:
A printed circuit board (PCB) substrate and method for construction of the same. In one embodiment, a first dielectric material is associated with a first current return layer and a second dielectric material is associated with a second current return layer. A signal path layer is interposed between the first dielectric material and the second dielectric material. An adhesive layer is interposed between the first dielectric material and the second dielectric material such that the adhesive layer is substantially coplanar relative to the signal path layer.
Abstract:
The present invention is a polymeric composite comprising a polyimide component and a fluoropolymer component derived from a micro powder. The fluoropolymer micro powder has a melt point between 250 and 375° C. The fluoropolymer micro powder has an average particle size between 20 and 5000 nanometers (5.0 microns). The polyimide component and the fluoropolymer component are inter-mixed at a high dispersion level where the fluoropolymer component is present in a weight ratio from 10 to 60 percent. The polymeric composite of these two components is particularly useful in the form of a thin film used in high-speed digital circuitry or high signal integrity for low loss of a digital signal. The film can also be used as a wire wrap, or as a coverlay or base film substrate for flexible circuitry laminates.