Abstract:
Semiconductor manufacturing processes include providing a first substrate having a first passivation layer disposed above a patterned top-level metal layer, and further having a second passivation layer disposed over the first passivation layer; the second passivation layer has a top surface. The processes further include forming an opening in a first portion of the second passivation layer, and the opening exposes a portion of a surface of the first passivation layer. The processes further include patterning the second and first passivation layers to expose portions of the patterned top-level metal layer and bonding a second substrate and the first substrate to each other. The bonding occurs within a temperature range in which at least the exposed portion of the first passivation layer undergoes outgassing.
Abstract:
Provided is an apparatus for harvesting/storing piezoelectric energy, including: a substrate having a groove at a side thereon; a piezoelectric MEMS cantilever having an end fixed to the substrate and the other end floating above the groove, and configured to convert and store an external vibration into electric energy; and a mass formed at one end of the piezoelectric MEMS cantilever and configured to apply a vibration, and a manufacturing method thereof.
Abstract:
Methods and apparatus for forming MEMS devices. An apparatus includes at least a portion of a semiconductor substrate having a first thickness and patterned to form a moveable mass; a moving sense electrode forming the first plate of a first capacitance; at least one anchor patterned from the semiconductor substrate and having a portion that forms the second plate of the first capacitance and spaced by a first gap from the first plate; a layer of semiconductor material of a second thickness patterned to form a first electrode forming a first plate of a second capacitance and further patterned to form a second electrode overlying the at least one anchor and forming a second plate spaced by a second gap that is less than the first gap; wherein a total capacitance is formed that is the sum of the first capacitance and the second capacitance. Methods are disclosed.
Abstract:
A layer structure for a micromechanical component, having: a first layer, which is usable both for an electrical wiring of the component and as electrode of the component; and a second layer which is resistant to oxide etching and is disposed below the first layer, the second layer being formed essentially in one plane.
Abstract:
A method to form a titanium nitride (TiN) hard mask in the Damascene process of forming interconnects during the fabrication of a semiconductor device, while the type and magnitude of stress carried by the TiN hard mask is controlled. The TiN hard mask is formed in a multi-layered structure where each sub-layer is formed successively by repeating a cycle of processes comprising TiN and chlorine PECVD deposition, and N2/H2 plasma gas treatment. During its formation, the stress to be carried by the TiN hard mask is controlled by controlling the number of TiN sub-layers and the plasma gas treatment duration such that the stress may counter-balance predetermined external stress anticipated on a conventionally made TiN hard mask, which causes trench sidewall distortion, trench opening shrinkage, and gap filling problem.
Abstract:
A microelectromechanical system (MEMS) device may include a MEMS structure over a first substrate. The MEMS structure comprises a movable element. Depositing a first conductive material over the first substrate and etching trenches in a second substrate. Filling the trenches with a second conductive material and depositing a third conductive material over the second conductive material and the second substrate. Bonding the first substrate and the second substrate and thinning a backside of the second substrate which exposes the second conductive material in the trenches.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
The invention relates to method for bonding at least two substrates, for example made from glass, silicon, ceramic, aluminum, or boron, by using an intermediate thin film metal layer for providing the bonding, said method comprising the following steps of: a) providing said two substrates; b) depositing said thin film metal layer on at least a part of a surface of a first substrate of the two substrates; c) bringing a surface of the second substrate into contact with said thin film metal layer on said surface of the first substrate such that a bonding between the second substrate and the thin film metal layer on the first substrate is provided; and d) at least locally strengthening the bonding between the second substrate and the thin film metal layer on the first substrate. The invention also relates to a device comprising two substrates, for example made from glass, silicon, ceramic, aluminum, or boron, and an intermediate thin film metal layer.
Abstract:
A method includes a step of performing a time multiplexed etching process, wherein the last etching step of the time multiplexed etching process is of a first time duration. After performing the time multiplexed etching process, an etching step having a second time duration is performed, wherein the second time duration is greater than the first time duration.
Abstract:
MEMS structures and methods utilizing a locker film are provided. In an embodiment a locker film is utilized to hold and support a moveable mass region during the release of the moveable mass region from a surrounding substrate. By providing additional support during the release of the moveable mass, the locker film can reduce the amount of undesired movement that can occur during the release of the moveable mass, and preventing undesired etching of the sidewalls of the moveable mass.