Abstract:
An x-ray generating apparatus comprises: a vacuum container having a main body, and a moving member coupled movably and airtightly to the main body via a vacuum bellows; and a guide mechanism, provided on an outer side of the vacuum container, for regulating the movement and inclination of the moving member in an approaching/separation direction with respect to an electron gun. The guide mechanism includes a guide portion where a guide flat surface along a plane orthogonal to a central axis of the electron beam is formed, the guide portion being provided on the main body side, a guided portion where a guided flat surface facing the guide flat surface is formed, the guided portion being provided on the moving member side, and at least three rolling elements placed between the guide flat surface and the guided flat surface.
Abstract:
An X-ray tube for accelerating electrons under a high voltage potential, said X-ray tube includes an evacuated elongated housing that is sealed, a through transmission target anode deposited on an inner surface of said elongated housing, said through transmission target anode configured having a cross-sectional center, a cathode structure disposed in said elongated housing, said cathode structure configured to emit the electrons toward said through transmission target anode, two or more filaments disposed linearly in said elongated housing, said two or more filaments linearly positioned end-to-end proximate said cross-sectional center, said evacuated housing configured to vacuum seal therein said two or more filaments, and, thus, such X-ray tube functions to provide a lengthened, elongated, symmetrical radiation field.
Abstract:
This disclosure presents systems for x-ray illumination that have an x-ray brightness several orders of magnitude greater than existing x-ray technologies. These may therefore useful for applications such as trace element detection or for micro-focus fluorescence analysis. The higher brightness is achieved in part by using designs for x-ray targets that comprise a number of microstructures of one or more selected x-ray generating materials fabricated in close thermal contact with a substrate having high thermal conductivity. This allows for bombardment of the targets with higher electron density or higher energy electrons, which leads to greater x-ray flux. The high brightness/high flux x-ray source may then be coupled to an x-ray optical system, which can collect and focus the high flux x-rays to spots that can be as small as one micron, leading to high flux density.
Abstract:
An x-ray tube includes a target on which electrons impinge to form a diverging x-ray beam. The target has a surface formed from first and second target materials, each tailored to emit a respective x-ray energy profile. A first x-ray optic may be provided for directing the beam toward the sample spot, the first x-ray optic monochromating the diverging x-ray beam to a first energy from the energy emitted by the first target material; and a second x-ray optic may be provided, for directing the beam toward the sample spot, the second x-ray optic monochromating the diverging x-ray beam to a second energy from the energy emitted by the second target material. Fluorescence from the sample spot induced by the first and second monochromated energies is used to measure the concentration of at least one element in the sample, or separately measure elements in a coating and underlying substrate.
Abstract:
A metal including a passivation film 33a with a thickness of 10 nm or more is used as a metal electrode (a focus cup electrode 33) for generating an electric filed in a vacuum. The focus cup electrode 33 is made of stainless steel. The stainless steel is immersed in a treatment solution to perform coating (passivation treatment) . Accordingly, the passivation film 33a can be formed to be thicker than 10 nm. In this manner, the passivation film 33a is thicker than 10 nm. Therefore, the surface is uniform, and the adhesion is excellent, and the number of pinholes is small. Accordingly, the withstand voltage performance can be improved.
Abstract:
An X-ray generation device which can be efficiently used is provided. The X-ray generation device 1 has an electron gun 3, a target unit T, a tubular portion 5, a reflected electron detector 31, and a coil unit 9, and the target unit T includes a plurality of targets 23, and a plurality of mark portions 27 having a predetermined location relationship with the targets 23 and each having a surface area larger than a surface area of the target 23, when viewed from a normal direction to principal faces of the target unit T.
Abstract:
In a multi-source radiation generating apparatus including a plurality of combinations of a cathode and a target, an extraction electrode is disposed for a plurality of cathodes in common. When a potential of the extraction electrode is constant, potentials for the cathodes are selectively switched between a cutoff potential which is higher than the potential of the extraction electrode and an emission potential which is lower than the potential of the extraction electrode.
Abstract:
The present invention relates to an X-ray mammography system including an X-ray detecting unit and an X-ray generating unit, The X-ray detecting unit includes a detecting portion that detects X-rays that have passed through a breast. The X-ray generating unit includes a transmission type target and an electron emitting source and is configured to radiate X-rays toward the detecting portion when irradiated with electrons. The transmission type target has a target layer having an electron incidence surface. The transmission type target radiates X-rays in a direction opposite to the electron incidence surface. The distance between a normal to the target layer and a distal end, which is an end of an X-ray irradiated region of the detecting portion closer to the chest of the testee, is larger than the distance between the normal and a proximal end, which is an end of the X-ray irradiated region far away from the chest.
Abstract:
Provided is a radiation generating tube in which an insulating tube is prevented from being damaged by heat generation of a target or an electron emitting source during drive. Extending portions extending along an outer periphery of an insulating tube are provided to a cathode and an anode, respectively, and the insulating tube is joined to the extending portions to enhance the strength of joint portions. At the same time, the insulating tube can be deformed easily by setting a tube wall thickness of the insulating tube at a central portion in a longitudinal direction to be smaller than a tube wall thickness of an opening end, and thus the concentration of thermal stress on the joint portions caused by an increase in temperature of the cathode and the anode is alleviated.
Abstract:
The disclosed subject matter includes devices and methods relating to vacuums and vacuum assemblies. In some aspects, methods and devices relate to a vacuum assembly including a body defining an evacuated vacuum chamber, a conduit in the body extending between the vacuum chamber and an exterior of the body, a plug at least partially occluding the conduit, and a seal between the plug and the body that seals the vacuum chamber from the exterior of the body.