Abstract:
A method of making a semiconductor chip assembly includes providing a bump and a ledge, mounting an adhesive on the ledge including inserting the bump into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the bump with an aperture in the conductive layer, then flowing the adhesive between the bump and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, then mounting a semiconductor device on the bump opposite a cavity in the bump, wherein a heat spreader includes the bump and a base that includes a portion of the ledge adjacent to the bump, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A heat/electricity discrete metal core-chip on board Module includes a heat dissipation substrate, which has a surface that is recessed to form a carriage zone and a relatively elevated engagement section; a dielectric layer, which is formed of a compound that is formed on the heat dissipation substrate through conversion coating and covers the carriage zone of the heat dissipation substrate, the dielectric layer defining a window like heat conduction zone at a location corresponding to the engagement section of the heat dissipation substrate, so that the heat conduction zone corresponds exactly to the engagement section of the heat dissipation substrate; and an electrical connection layer, which is formed on the dielectric layer. A chip is set on the heat conduction zone and is connected to the electrical connection layer through wire bonding, whereby the paths for heat transfer and electricity transmission are separated.
Abstract:
A method of making a semiconductor chip assembly includes providing first and second posts, first and second adhesives and a base, wherein the first post extends from the base in a first vertical direction into a first opening in the first adhesive and is located within a periphery of the second post, the second post extends from the base in a second vertical direction into a second opening in the second adhesive and the base is sandwiched between and extends laterally from the posts, then flowing and solidifying the adhesives, then providing a conductive trace that includes a pad and a terminal, wherein the pad extends beyond the base in the first vertical direction and the terminal extends beyond the base in the second vertical direction, providing a heat spreader that includes the posts and the base, then mounting a semiconductor device on the first post, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
Disclosed are an LED package, an LED package module having the same and a manufacturing method thereof, and a head lamp module having the same and a control method thereof. The light emitting diode package includes: a package substrate; a light emitting diode chip mounted on one surface of the package substrate; an electrode pad formed on the other surface of the package substrate and electrically connected to the light emitting diode chip; and a heat radiation pad formed on the other surface of the package substrate and electrically insulated from the electrode pad.
Abstract:
Provided is an electronic package wherein a built-in chassis (CS) and an FPC substrate (11) including a ground pattern (12) are mounted on a front bezel (BZ1) and a back bezel (BZ2) formed of a conductive material. A ground pattern (12) is arranged between the back bezel (BZ2) and the built-in chassis (CS), and the back bezel (BZ2) includes a claw section (22) for pressing the ground pattern (12) to the built-in chassis (CS). The claw section (22) has elasticity when the claw section is in a linear state, and presses the ground pattern (12) by a leading end (22T) formed by bending an outer periphery.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a substrate on the adhesive including aligning the post with an aperture in the substrate, then flowing the adhesive into and upward in a gap located in the aperture between the post and the substrate, solidifying the adhesive, then etching the post to form a cavity in the post, then mounting a semiconductor device on the post, wherein a heat spreader includes the post and the base and the semiconductor device extends into the cavity, electrically connecting the semiconductor device to the substrate and thermally connecting the semiconductor device to the heat spreader.
Abstract:
Provided are a semiconductor light emitting module and a method of manufacturing the same, which allow achieving high luminance light emission as well as lightweight and compact features. In a semiconductor light emitting module (101), a projecting portion (202) serving as a reflecting member is formed on a metal thin plate (102) to surround a semiconductor light emitting element (104). The semiconductor light emitting element (104) is connected to a printed board (103) by using a wire (201), for example. The projecting portion (202) is formed by pressing and bending the metal thin plate (102) from a back surface, for example, to surround the element and to be higher than the semiconductor light emitting element (104).
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a post, a base, an ESD protection layer and an underlayer. The conductive trace includes a pad and a terminal. The semiconductor device is electrically connected to the conductive trace, electrically isolated from the underlayer and thermally connected to the heat spreader. The post extends upwardly from the base into an opening in the adhesive, the base extends laterally from the post and the ESD protection layer is sandwiched between the base and the underlayer. The conductive trace provides signal routing between the pad and the terminal.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a first conductive layer on the adhesive including aligning the post with an aperture in the first conductive layer, then flowing the adhesive between the post and the first conductive layer, solidifying the adhesive, then etching the post to form a first cavity in the adhesive above the post, depositing a second conductive layer into the first cavity to form a second cavity that extends into the first cavity, providing a conductive trace that includes a pad, a terminal and a selected portion of the first conductive layer, providing a heat spreader that includes the post, the base and a flange that includes a selected portion of the second conductive layer that defines the second cavity, mounting a semiconductor device on the flange in the second cavity, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A light emitting diode (LED) illumination device includes a vapor chamber, a circuit board and at least one LED. At least one protrusion is formed on a surface of the vapor chamber, and a heat conducting tin layer is formed on the protrusion. The circuit board includes at least one through hole for passing the protrusion. The circuit board is formed by sequentially stacking an insulating layer and a heat conducting layer. The LEDs are installed on and contacted with the protrusions respectively, and each LED has two pins electrically connected to the circuit board. The LED device of the present invention is in a direct contact with the protrusion of the LED, such that the heat dissipated from the LED can be conducted to the vapor chamber, and then the vapor chamber carries away the heat quickly.