Abstract:
A circuit board (100) includes power supply planes (141, 143) arranged with gaps (147) in a D layer (140), connection members (182, 183, 184) electrically connecting at least one of the power supply planes (141, 143) to an electronic device (181), plural conductor elements (121) repeatedly arranged to surround at least some of the gaps (147) and the connection members (182, 183, 184), and ground planes (111, 171) being located in an A layer (110) or a G layer (170) and extending in a second region or a third region including a region opposing the first region and a region opposing the conductor elements (121).
Abstract:
A wiring device includes a main conductive line, a plurality of branch conductive lines, a passivation layer, a plurality of contact holes, a plurality of conductive patterns, and a plurality of outside device bonding regions. The branch conductive lines are electrically connected to the main conductive line. The passivation layer is disposed on the branch conductive lines. Each the contact hole partially exposes one of the branch conductive lines. The conductive patterns are disposed on the passivation layer, and each of the conductive patterns is disposed respectively corresponding to each of the branch conductive lines. Each of the conductive patterns is electrically connected to the corresponding branch conductive line via the contact holes. Each of the outside device bonding regions is disposed corresponding to each of the branch conductive lines. At least one of the outside device bonding regions does not overlap the contact hole in a vertical projective direction.
Abstract:
An LED package structure with standby bonding pads for increasing wire-bonding yield includes a substrate unit, a light-emitting unit, a conductive wire unit and a package unit. The substrate unit has a substrate body and a plurality of positive pads and negative pads. The light-emitting unit has a plurality of LED bare chips. The positive electrode of each LED bare chip corresponds to at least two of the positive pads, and the negative electrode of each LED bare chip corresponds to at least two of the negative pads. Each wire is electrically connected between the positive electrode of the LED bare chip and one of the at least two positive pads or between the negative electrode of the LED bare chip and one of the at least two negative pads. The package unit has a light-permitting package resin body on the substrate body to cover the LED bare chips.
Abstract:
A method for making an interconnection component is disclosed, including forming a plurality of metal posts extending away from a reference surface. Each post is formed having a pair of opposed end surface and an edge surface extending therebetween. A dielectric layer is formed contacting the edge surfaces and filling spaces between adjacent ones of the posts. The dielectric layer has first and second opposed surfaces adjacent the first and second end surfaces. The dielectric layer has a coefficient of thermal expansion of less than 8 ppm/° C. The interconnection component is completed such that it has no interconnects between the first and second end surfaces of the posts that extend in a lateral direction. First and second pluralities of wettable contacts are adjacent the first and second opposed surfaces. The wettable contacts are usable to bond the interconnection component to a microelectronic element or a circuit panel.
Abstract:
A ceramic substrate for an electronic part inspecting apparatus that can be manufactured in accordance with predetermined specifications, regardless of the number and location of pins required, relatively quickly and inexpensively is provided. In certain embodiments the ceramic substrate is configured to connect to a probe for inspecting an electronic component, and the ceramic substrate comprises a plurality of vias located in a center area of the ceramic substrate that penetrate through the ceramic substrate in its thicknesswise direction, pads located in an outer periphery that surrounds the center area where the vias are located, the pads being configured to connected to the probes, and a conductive layer located only over the front surface of the ceramic substrate and connects the vias to the respective pads. Certain embodiments comprise a greater number of vias than pins. A method of manufacturing the ceramic substrate is also provided.
Abstract:
A printed wiring board having an insulating core; a plurality of vias having axes parallel to and at equal distance from a reference axis and passing through the core; a first conductive film formed on a front surface of the core from the reference axis to each of the individual vias; a first insulating film stacked on the front surface of the core and covering the first conductive film; a first connecting via having an axis identical to the reference axis and passing through the first stacked film; a second conductive film formed on a back surface of the core from the reference axis to each of the individual vias; a second insulating film stacked on the back surface of the core and covering the second conductive film; and a second connecting via having an axis identical to the reference axis and passing through the second stacked film.
Abstract:
A laminated body and fabrication method thereof, which allow space saving and control of variation in internal layer resistance, are provided. When forming an internal-layer resistive element 7 in a multilayer ceramic substrate 10, the internal-layer resistive element 7 is connected to exterior electrodes (an upper surface electrode 32 and an undersurface electrode 34) via multiple via-electrodes 3a and 3b arranged in parallel, without a pad electrode adopted in the conventional laminated body. Moreover, in a multilayer ceramic substrate having multiple internal-layer resistive elements arranged in a multilayer structure, multiple internal-layer resistive elements are directly connected via multiple via-electrodes arranged in parallel.
Abstract:
A printed circuit board includes a top layer and a bottom layer. A power supply and an electronic component are located on the top layer. The power supply is connected to the top layer and the bottom layer through a first via. A number of second vias extend through the printed circuit board and are connected to the top layer and the bottom layer. The distance between each second via and the electronic component is the same.
Abstract:
In accordance with a first embodiment, the present invention provides a circuit substrate comprising a first surface; a second surface; a first via having a first end near said first surface and a second end near said second surface; a second via having a first end near said first surface and a second end near said second surface; a first conductive element electrically coupling said first end of said first via and said first end of said second via; a second conductive element electrically coupling said second end of said first via and said second end of said second via; an input signal line coupled to said first via; and an output signal line coupled to said second via.
Abstract:
A wiring substrate includes a plurality of electrode terminals, to which external connection terminals of an electronic component are coupled, arranged in a row on one principal surface thereof, wherein the electrode terminals each include: a first linear portion; a second linear portion extending from an end of the first linear portion in a direction different from a direction of the first linear portion; and a bent portion that is a part where the first linear portion and the second linear portion are connected.