Abstract:
A system for scanning a substrate and specifically a volume of that substrate to identify anomalous structures or defects is herein described. Radiation is focused at locations within the volume of the substrate and measurements of scattered light are made. Scanning of the volume of a substrate may be fairly uniform or over selected regions, favoring those regions of the substrate that are to be involved with subsequent substrate processing steps.
Abstract:
A system is presented. The system includes an electromagnetic radiation source configured to generate a mode-matched electromagnetic radiation that irradiates a gas-mixture filled in a gas compartment at a determined pressure ‘P’ bars, an intensity enhancement mechanism that internally reflects the mode-matched electromagnetic radiation a plurality of times to achieve an effective intensity ‘E’, of reflected electromagnetic radiation in a region of interest, that is ‘N’ times an intensity of the mode-matched electromagnetic radiation, and a detection subsystem that analyses the gas-mixture based upon Raman scattered photons emitted from the region of interest, wherein a product of the ‘P’ and the ‘N’ is at least 30.
Abstract:
An inspection device is required to detect a minute defect, that is, to have high sensitivity as semiconductor devices become finer. There are some approaches for improving the sensitivity. One is to shorten the wavelength of illuminating light radiated onto a sample. This is because, assuming that the wavelength of the illuminating light is λ, I∝λ−4 is established between the magnitude of scattered light is I and λ. Another approach is to use illuminating light including multiple wavelengths. An approach for taking in more scattered light generated from the sample is also possible. However, an optical system suitable for these approaches has not been sufficiently found in conventional techniques. One feature of the present invention is to detect a defect by using a Wolter optical system including a Wolter mirror.
Abstract:
An analysis system includes a moveable focusing lens, a laser (typically an eye safe laser) having an output directed at the focusing lens, and a spectrometer outputting intensity data from a sample. A controller system is responsive to the spectrometer and is configured to energize the laser, process the output of the spectrometer, and adjust the position of the focusing lens relative to the sample until the spectrometer output indicates a maximum or near maximum intensity resulting from a laser output focused to a spot on the sample.
Abstract:
Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.
Abstract:
A structured illumination microscopic device includes a first spatial modulation unit spatially modulating a fluorescent sample using an excitation light having a sinusoidal illumination distribution of a spatial frequency K and having an optical frequency ω1 for shifting a fluorescent substance to an excitation level; a second spatial modulation unit spatially modulating the fluorescent sample using a stimulation light having a sinusoidal illumination distribution of a spatial frequency K and having an optical frequency ω2 for shifting the excited fluorescent substance to a base level; and an imaging unit obtaining, as a modulated image, an image of the fluorescent sample with spontaneously emitted light generated at the fluorescent sample in accordance with the excitation light and the stimulation light.
Abstract:
Methods and devices for cytometric analysis are provided. A cytometry apparatus is provided which may be used with a stationary sample cuvette for analysis of a stationary sample or with a flow sample cuvette for analysis of a flowing sample. The methods and devices provided herein may be used to perform cytometric analysis of samples under a wide range of experimental and environmental conditions.
Abstract:
The present invention relates to a method and an apparatus for a fast thermo-optical characterisation of particles. In particular, the present invention relates to a method and a device to measure the stability of (bio)molecules, the interaction of molecules, in particular biomolecules, with, e.g. further (bio)molecules, particularly modified (bio)molecules, particles, beads, and/or the determination of the length/size (e.g. hydrodynamic radius) of individual (bio)molecules, particles, beads and/or the determination of length/size (e.g. hydrodynamic radius).
Abstract:
Methods and systems for reconstructing individual spectra acquired from laser interrogation spots in a 2D array illuminating a particle are described. A particle is positioned in a 2D array that includes multiple laser interrogation spots. The laser interrogation spots of the particle are detected in the 2D array using a spectrometer. Multifocal spectral patterns are generated based on the laser interrogation spots, and an individual spectrum for each laser interrogation spot is reconstructed based on the plurality of multifocal spectral patterns.
Abstract:
Laser systems with reduced apparent speckle are provided. The laser systems emit laser light having different mode structures that change within a time period of an integration period of an imaging system used to observe a field of view that is at least in part illuminated by the laser systems.