Abstract:
The invention provides fluororesin fiber paper excellent in adhesion to a copper foil, heat resistance, chemical resistance, low water absorption and electric insulation and capable of being used as a substrate of a printed board suitable for use in high frequency, of which a low dielectric loss is required. The fluororesin fiber paper is a porous sheet obtained by forming a slurry comprising fluororesin fiber into a sheet by a wet paper making method and sintering the resultant sheet and has an average pore diameter of 0.5 to 50 μm and a maximum pore diameter of at most 250 μm. A copper-clad laminate for printed board is produced by laminating the fluororesin fiber paper and a copper foil having a ten point mean height of surface roughness profile (Rz) of 0.5 to 8.0 μm on each other by means of vacuum hot pressing.
Abstract:
A compression function layer 60 is provided on at least one board surface. The compression function layer 60 adds a function of being compressed by receiving pressure in the direction of the board thickness to the resin board 10 which includes this layer. Thereby a sufficient pressure is applied to conductors 14.
Abstract:
This device for manufacture of an electronic circuit forms a desired circuit pattern P by permeating liquid material (10, 40) including a material for circuit pattern formation into a permeable electronic substrate (100). This device for manufacture comprises an ink jet type head (20, 50) which discharges liquid material (10, 40) against an electronic substrate (100), and a shifting device (70) which relatively shifts the ink jet type head (20, 50) and the electronic substrate (100) with respect to one another.
Abstract:
The invention relates to a method for utilizing one or more B-stageable or pre-formed underfill encapsulant compositions in the application of electronic components, most commonly chip scale packages (CSP's) to substrates. One such composition comprises a thermoplastic resin system comprising a phenoxy resin, an expandable polymer sphere or thermosetting composition, optionally an epoxy resin such as higher molecular weight epoxy resin, a solvent, an imidazole-anhydride catalyst or comparable latent catalyst, and optionally, fluxing agents and/or wetting agents. The underfill encapsulant may be B-stageable to provide a coating on the substrate or component that is smooth and non-tacky. In an alternative embodiment, the underfill encapsulant is a pre-formed film. In both embodiments the expandable filler material expands upon the application of higher temperatures to form a closed-cell foam structure in the desired portion of the assembly. The method of applying the underfill application of the underfill to a component or substrate, attachment of the component and substrate, and heating of the assembly to a temperature sufficient to cause the expandable thermoplastic or thermosetting composition to foam. A second pre-applied underfill composition containing an epoxy resin, an anhydride curing agent, and catalyst may also be applied, either separately or in conjunction with the foamable underfill. The second composition acts as a pressure sensitive adhesive and may be applied selectively to parts of the CSP, for example to the solder bumps. The pressure sensitive adhesive property of the composition provides sufficient tack in order to hold the electronic assembly together during the assembly process.
Abstract:
A wiring glass substrate includes a glass substrate formed of glass and having a plurality of holes formed at predetermined positions, bumps so formed as to be connected to a conductive material filling the holes and wirings formed on a surface opposite to a surface having the bumps formed thereon and electrically connecting a plurality of connection terminals arranged in intervals different from intervals of the holes to the conductive material. The shape of the conductive material is porous and porous electrodes are bonded to the inner wall surfaces of the holes by an anchor effect to increase the strength of the glass substrate.
Abstract:
A method of metal layer formation which can satisfactorily eliminate the problems caused by plating solution infiltration and is sufficiently effective in reducing the permittivity of an insulating layer; and a metal foil-based layered product obtainable by the method. The method is for forming a metal layer on a surface of a porous resin layer and includes: a step in which a porous resin layer having a dense layer as a surface part thereof is used as the porous resin layer and a thin metal film is formed on the surface of the dense layer by a dry process; and a step in which a metal film is formed on the surface of the thin metal film by plating.
Abstract:
A circuit board including a desired number of electrically insulating layers and wiring layers laminated alternately, and an inner via hole for securing an electrical connection between the wiring layers by compressing and hardening a conductive paste including a conductive particle and a resin. In the electrically insulating layer, a porous sheet is provided a resin sheet at least one surface, and the porous sheet is not impregnated with a resin at least at a central portion. A through hole penetrating the electrically insulating layer in the direction of the thickness of the electrically insulating layer is filled with a conductive paste including a conductive particle and a resin, and pores that are present inside the porous sheet are filled with laminated resin. The average hole diameter of the pores inside the porous sheet may be smaller than the average particle size of the conductive particle. Thereby, it is possible to make the insulating layer of the circuit board securing the interlayer electrically connection by an inner via hole including a conductive paste to be homogenized and ultra-thin and improve the reliability of the connection of the inner via hole.
Abstract:
A transmission line circuit is described which includes a conductive plane, a plurality of signal traces, and an intermediate layer between the conductive plane and the signal traces. The intermediate layer maintains a substantially constant separation between the conductive plane and the signal traces. At least a portion of the intermediate layer comprises air. The signal traces and the conductive plane form transmission lines.
Abstract:
The present invention provides a method of manufacturing a metal foil laminated plate comprising the step of forming and attaching a resin porous layer onto a metal foil by a wet coagulating method, wherein a metal foil including a conductive bump having an almost equal height on a film forming side surface is used. The present invention provides a metal foil laminated plate comprising a metal foil including a conductive bump having an almost equal height and a resin porous layer laminated integrally, the conductive bump being exposed. The present invention provides another metal foil laminated plate comprising a metal foil including a conductive bump having an almost equal height, a resin porous layer laminated integrally, and a thermosetting resin impregnated in a hole of the resin porous layer, in which the conductive bump is exposed from the resin porous layer.
Abstract:
An interconnect module providing conductive interconnection paths between an integrated chip, a printed wiring board, and at least one layer within the module, incorporating a plurality of alternating dielectric and conductive layers laminated together to form a unitary structure. The module includes a chip attach surface and a board attach surface, that define contact pads for attachment to corresponding pads on the chip and printed wiring board, respectively, by means of solder balls.