Abstract:
The inventive method provides a simple and economical method of manufacturing a laminate which is catalytically effective for subsequent electroless deposition thereon of metals, such as copper, and which is useful as a substrate for printed circuit boards. Advantageously, the inventive method provides an improved laminate having a substantially uniform distribution of finely divided catalytic metal, Me.sub.(0), within a crosslinked synthetic polymer impregnant. A catalytic metal-polymer complex is formed between a salt of a catalytic metal and a crosslinkable synthetic polymer, optionally containing a monomeric reactive diluent, to provide a concentrate which may be worked up into an impregnating composition for impregnating reinforcing material therewith. The complex is then destroyed and the catalytic metal, such as palladium-II, reduced to elemental metal, such as palladium metal, Pd.sub.(0), during or after crosslinking of the polymer system under conditions effective for crosslinking the polymer system. Preferably destruction and reduction occur during crosslinking. The catalytic metal is a Group IB or Group VIII metal, preferably palladium or nickel. The crosslinkable synthetic polymer is an unsaturated polyester or polyvinyl ester.
Abstract:
Molded, one-piece articles having selected surfaces suitable for adherent metallization, molded, metallized, one-piece articles and processes for making the articles are disclosed. The molded one-piece articles may be formed by: molding into a first mold cavity a first portion of the article using a first electrically insulating material which is capable of adhesion promotion by an adhesion promotion process and is catalytic for adherent metallization or is capable of being rendered catalytic for adherent metallization by an activating process; inserting the first portion into a second mold cavity; and molding into the second mold cavity a second portion of the article using a second electrically insulating material, leaving selected surfaces of the first portion exposed. The second material is resistant to the adhesion promotion process employed for the first material, or is non-catalytic for, and incapable of being rendered catalytic for, adherent metallization by the activating process employed for the first material. The exposed surfaces of the first portion of the article then may be metallized, for example, by electroless deposition to form the metallized one-piece article.
Abstract:
This invention concerns a method of manufacturing printed wiring boards by electrolessly plating copper on a precatalyzed base material which contains a polymeric resin, woven glass cloth reinforcement and a noble metal catalyst on clay support to precatalyze the base material for electrolessly depositing copper. The improvement comprises providing in the polymeric resin, a phenolic resin component and a silicate filler. The silicate filler is present in an amount between 30 and 100 part per hundred parts of the polymeric resin, and in an amount sufficient to provide a take time for the initiation of electroless copper deposition at least two times faster than a comparable precatalyzed base material without the silicate filler and phenolic resin.
Abstract:
A process for producing a printed wiring board characterized by forming a nickel layer by electroless plating and a copper layer formed thereon by electroless plating, or forming a copper undercoating layer before the nickel layer by electroless plating can produce printed circuit boards excellent in resistance to electrolytic corrosion and suitable for mounting parts in high density.
Abstract:
A dielectric layered sequentially processed circuit board is disclosed. A first photodefinable resin containing an electroless plating catalyst is disposed on a substrate and portions of the substrate are exposed through the first resin. A second photodefinable resin absent the electroless plating catalyst is disposed on the first resin, and portions coincident with the exposed portions of the substrate as well as portions of the first resin are exposed through the second resin. A conductive material is deposited on the exposed portions of the substrate and the exposed portions of the first resin.
Abstract:
A method for fabricating a hybrid IC substrate comprises the steps of: preparing an insulating ceramic substrate having a major surface; baking one or more conductors of a first group formed of high melting point metal or alloy thereof on the major surface; covering the conductors of the first group with a first plated film formed by electroless plating; forming an insulating porous active including a glass component and a small amount of a metal component having a catalytic action for electroless plating on the first plated film; and forming one or more conductors of a second group by electroless plating on the active layer, whereby portions of the active layer sandwiched between the conductors of the first and second groups are rendered conductive.
Abstract:
Substrate composites, well adopted for the production of metallized printed circuits and facilely prepared by, e.g., papermaking procedures, include a central core layer comprising fibrous cellulosic material or flaked mica within a matrix of a thermosetting resin binder, said central core element having coextensively laminated to at least one of the face surfaces thereof, a lamina of a thermosetting resin comprising non-conductive metal oxide filler material distributed therethrough, and said metal oxide being borohydride reduceable and reactive to form unstable metal hydride intermediates.
Abstract:
The disclosure is of a substrate or supporting board for supporting printedircuits and the method of its manufacture. The boards of the invention are preferably made of a high-temperature resistant thermoplastic, sensitized to receive a printed circuit element by the dispersion of coated iron or copper particles in the thermoplastic matrix. The coating is a bonding assistant.
Abstract:
A method of depositing a metal on a surface of a substrate is disclosed. The method comprises forming a dielectric coat containing an activating metal species on the surface of the substrate. The coat is then treated with a reviving agent selected from chromic acid and ceric ammonium nitrate to revive the activating metal species to render the coat capable of participating in an electroless metal deposition.
Abstract:
The present invention represents a new approach to solving modern electronic packaging problems which combines in one system the best features of discrete wiring techniques and printed circuits. According to this invention, there are provided new and useful procedures whereby a prefabricated organized wire interconnecting device, hereinafter referred to as a wire scribed circuit board, is produced by writing or plotting a predetermined circuit interconnection onto the surface of an insulating base using as the writing medium or ''''ink'''' a continuous wire filament. The wire is fed onto the surface of the base continuously from one side thereof, simultaneously affixed to the base to form the interconnecting pattern, and cut at the finish of each line, to thereby form a written wire image of a predetermined interconnecting pattern on the base. Preferred embodiments of the wire scribed boards include a wire image of a predetermined interconnecting pattern in which wire conductors exhibit inflection points produced solely as a result of the writing technique and/or crossovers in essentially the same plane as the wire, as well as connection terminals to which the written wire lines and/or electrical components may be attached. The boards resemble a printed circuit board in appearance and cubic packing potential, although no art work or graphic processes of any kind are employed in their production. Unlike printed circuit boards, repairs as by conductor additions or deletions or modifications may be readily made.