Abstract:
To provide a method for producing a semiconductor substrate able to uniformly and quickly fill through-holes in the semiconductor substrate with conductive material. This method comprises a process for forming through-holes (14) in a substrate (10), a process for disposing solder (42) on one surface of the substrate, and a process for pressing the solder on a side of the substrate by a press (40) and heat-melting the solder to fill the through-holes in the substrate with the solder.
Abstract:
A solder resist comprising a thermosetting resin is printed on a surface of an insulating board (7) having a conductor circuit (6). The solder resist is then heat-cured to form an insulating film (1) having a low thermal expansion coefficient. A laser beam (2) is then applied to the portion of the insulating film in which an opening is to be formed, to burn off the same portion for forming an opening (10), whereby the conductor circuit (6) is exposed. This opening may be formed as a hole for conduction by forming a metal plating film on an inner surface thereof. It is preferable that an external connecting pad be formed so as to cover the opening. The film of coating of a metal is formed by using an electric plating lead, which is preferably cut off by a laser beam after the electric plating has finished.
Abstract:
Microelectronic devices, methods for packaging microelectronic devices, and methods for forming interconnects in microelectronic devices are disclosed herein. In one embodiment, a method comprises providing a microelectronic substrate having a front side and a backside. The substrate has a microelectronic die including an integrated circuit and a terminal operatively coupled to the integrated circuit. The method also includes forming a passage at least partially through the substrate and having an opening at the front side and/or backside of the substrate. The method further includes sealing the opening with a conductive cap that closes one end of the passage while another end of the passage remains open. The method then includes filling the passage with a conductive material.
Abstract:
An interconnect substrate including a first substrate on which a first interconnect pattern is formed, having a mounting region for an electronic chip; and a second substrate on which a second interconnect pattern electrically connected to the first interconnect pattern is formed. The second substrate includes a region to which at least a part of the first substrate is adhered, and a mounting region for an electronic chip.
Abstract:
The present invention provides a package for enclosing a semiconductor chip and having a plurality of terminals, wherein the terminals are connected with each other by a conductive member in a manner that the electrical connection is disabled by an action of mounting the package on a printed circuit board. During storage, the terminals that are connected by a conductive material are in a short-circuited state until such time immediately before the package is mounted on a printed circuit board. This package prevents high voltage that results from static electricity between the terminals from being applied to circuits of the chip during storage or handling. Therefore, the short-circuited state maintained between the terminals is released after the mounting process, with the result that the operation of the semiconductor chip is not obstructed. The mounting of the package on a printed circuit board may be by soldering the terminals, and the conductive members are solder lines or a conductive thin film that are melt during mounding. The mounting may alternatively be by inserting the terminals into sockets, and the conductive members are wires connecting the terminals that are cut during mounting.
Abstract:
An electric heating system for motor vehicles including one or several electric heating elements; a control circuit provided for controlling the power dissipated by the heating elements; the control circuit including one or several power semiconductors arranged on a circuit board; the circuit board is by means of a solid matter connection connected by the side facing away from the power semiconductors to a metal plate intended to be mass potential; the metal plate being electrically insulated from conductor paths located on the underside of the circuit board and intended to carry a voltage in relation to the ground potential; the control circuit being arranged in a housing. One or several heat sinks are provided outside the housing. The metal plate is connected with the heat sinks arranged outside the housing by thermally conductive connectors.
Abstract:
An electric connector and IC tin ball shaping and fixing manufacturing method is used in welding portions of terminals of one of an electric connector, IC and other electronic elements. A tin film is covered on a bottom of the ball grid array seat; wherein the tin film is formed by connecting a plurality of round small tin pieces with respect to the terminals, and a periphery of the small tin pieces being enclosed by slender connecting portions the ball grid array seat is melt so that the small tin pieces of the tin film weld as tin liquid, then the slender connecting portions will break and the small tin pieces are connected as a tin ball; thereby, the liquid tin ball will enclose the welding portion of the terminal. Finally the tin balls is cooled and condensed and then combined to the welding portions of the terminals.
Abstract:
The semiconductor device comprises an insulating film in which penetrating holes are formed, a semiconductor chip having electrodes, a wiring pattern adhered by an adhesive over a region including penetrating holes on one side of the insulating film and electrically connected to the electrodes of the semiconductor chip, and external electrodes provided on the wiring pattern through the penetrating holes and projecting from the surface opposite to the surface of the substrate on which the wiring pattern is formed. Part of the adhesive is drawn in to be interposed between the penetrating holes and external electrodes.
Abstract:
A flip-chip joinable substrate having non-plated-on contact pads and a method for making the same. The substrate has an external metal foil layer upon a dielectric layer upon a patterned internal metal layer having an internal contact area. An area of the external metal foil layer above the internal contact area is selected. A microvia cavity extending to the internal contact area is perforated centrally within the selected area and is filled with a mass of conductive paste forming an external contact pad. The external contact pad is used as an etch mask for removing the adjacent external metal foil.