Abstract:
Printed circuit board having a termination of a T-shaped signal line having at least two line ends, one line end being terminated using a terminating resistor against a supply voltage, and the other line end being terminated against the reference potential of the supply voltage.
Abstract:
A circuit structure of a package carrier including a plurality of chip pads, a first electrode, a second electrode, a third electrode and a fourth electrode is provided. These chip pads are arranged in an M×N array. A first bonding pad, a second bonding pad, a third bonding pad and a fourth bonding pad are disposed clockwise in the peripheral area of each chip pad in sequence. The orientations of each of the first, second, third, and fourth bonding pads of the (S−1)th row rotated by 90 degrees are equal to the orientations of each of the first, second, third and fourth bonding pads of the Sth row, respectively. The first electrode is connected with each first bonding pad. The second electrode is connected with each second bonding pad. The third electrode is connected with each third bonding pad. The fourth electrode is connected with each fourth bonding pad.
Abstract:
A multi-chip package comprises a plurality of chip pads and a plurality of LED chips. The chip pads are arranged in an M×N array, M and N each a positive integer greater than 1. A peripheral area of each chip pad comprises a respective first bonding pad, a respective second bonding pad, and a respective third bonding pad arranged in sequence in a clockwise direction. A first orientation of the respective first to third bonding pads in a first row of the N rows differs from a second orientation of the respective first to third bonding pads in a second row of the N rows by 90 degrees. Each of the LED chips is disposed on a respective one of the chip pads and electrically connected to two of the respective first to third bonding pads on a same side of the respective LED chip.
Abstract:
A printed wiring board including a core substrate, a build-up layer formed over the core substrate and including a first insulating layer, a conductor layer formed over the first insulating layer, and a second insulating layer formed over the conductor layer, and one or more wiring patterns formed over the first insulating layer. The conductor layer includes conductor portions, and the conductor portions have notched portions, respectively, facing each other across the wiring pattern.
Abstract:
A power distribution system for integrated circuits includes methods to damp resonance between a bypass capacitor network and a power/ground cavity of the printed circuit board that (a) does not require excessive quantities of bypass/damping components or (b) does not require high plane cavity capacitance or in the alternative can insure a Q of less than 1.4 at the transition from the bypass network to the plane cavity impedance cross-over.
Abstract:
A tape wiring substrate may have dispersion wiring patterns. The dispersion wiring patterns may be provided between input/output wiring pattern groups to compensate for the intervals therebetween. Connecting wiring patterns may be configured to connect the dispersion wiring patterns to a first end of the adjacent input/output wiring pattern.
Abstract:
A printed circuit board and method of manufacturing the printed circuit board, including a first and a second write wiring patterns, an end of a first line and an end of a second line of the first write wiring pattern are arranged on both sides of a third line of the second write wiring pattern. Circular connection portions are provided at the ends of the first line and the second line. In addition, through holes are formed in respective portions of a base insulating layer below the connection portions. Each connection portion comes in contact with a connecting region of a suspension body within the through hole.
Abstract:
A power distribution system for integrated circuits includes methods to damp resonance between a bypass capacitor network and a power/ground cavity of the printed circuit board that (a) does not require excessive quantities of bypass/damping components or (b) does not require high plane cavity capacitance or in the alternative can insure a Q of less than 1.4 at the transition from the bypass network to the plane cavity impedance cross-over.
Abstract:
An information processing device including a printed circuit board, to access a detachable storage medium, including a control device, provided on the printed circuit board, to control access to the storage medium; a slot connector, provided on the printed circuit board to accept the storage medium; a junction portion between the storage medium and the printed circuit board, to receive a signal from the storage medium; a signal line connected between the junction portion and the control device, to transmit a signal from the storage medium to the control device; a noise line connected between the junction portion and a ground terminal, to transmit noise from the junction portion to the ground terminal; and a noise absorption element, provided in the noise line between the junction portion and the ground terminal.
Abstract:
A method for manufacturing a double-sided circuit board includes preparing a substrate having the first and second surfaces, forming a first hole having a first opening with a diameter R1 on the first surface of the substrate, forming a second hole having a second opening with a diameter R2 on the second surface of the substrate, forming a third hole having a diameter smaller than R1 and/or R2 and connecting the first and second holes such that a penetrating hole formed of the first hole, the second hole and the third hole is formed in the substrate, forming a first conductive circuit on the first surface of the substrate, forming a second conductive circuit on the second surface of the substrate, and filling the penetrating hole with conductive material such that a through-hole conductor electrically connecting the first conductive circuit and the second conductive circuit is formed.