Abstract:
The present invention relates to a circuit board, which can miniaturize a conductor pattern formed around a via and improve current pass characteristics of the via at the same time by including a via passing through an insulating layer to be in contact with an upper conductor pattern and a lower conductor pattern and having a bent portion whose cross-sectional area or diameter changes discontinuously.
Abstract:
In a semiconductor chip in which LDMOSFET elements for power amplifier circuits used for a power amplifier module are formed, a source bump electrode is disposed on an LDMOSFET formation region in which a plurality of source regions, a plurality of drain regions and a plurality of gate electrodes for the LDMOSFET elements are formed. The source bump electrode is formed on a source pad mainly made of aluminum via a source conductor layer which is thicker than the source pad and mainly made of copper. No resin film is interposed between the source bump electrode and the source conductor layer.
Abstract:
The present invention aims at providing a lighting device configured to suppress uneven brightness, and a display device or a television receiver which includes the lighting device. The lighting device of the present invention includes a plurality of LEDs 16, an LED board 17S, a chassis 14, a connecting component 60, and a reflection sheet 21. The LEDs 16 are mounted on the LED board 175. Both of the LED boards 17S and 17C are attached to the chassis 14. The connecting component 60 electrically connect the LED boards 17S and 17C to each other. The reflection sheet 21 is overlaid on light source mounted surfaces 17A. In the lighting device, the connecting component 60 is arranged on a connecting component attached surface 17B of the LED board 17S. The connecting component attached surface 17B is opposite to the surface on which the reflection sheet 21 is overlaid.
Abstract:
An electrical interconnect between terminals on an IC device and contact pads on a printed circuit board (PCB). The electrical interconnect includes a substrate with a first surface having a plurality of openings arranged to correspond to the terminals on the IC device. A compliant material is located in the openings. A plurality of first conductive traces extend along the first surface of the substrate and onto the compliant material. The compliant material provides a biasing force that resists flexure of the first conductive traces into the openings. Vias extending through the substrate are electrically coupled the first conductive traces. A plurality of second conductive traces extend along the second surface of the substrate and are electrically coupled to a vias. The second conductive traces are configured to electrical couple with the contact pads on the PCB.
Abstract:
A golden finger and a board edge interconnecting device are disclosed. The golden finger includes a printed circuit board (PCB) surface layer and at least one PCB inner layer, where a metal foil of the PCB inner layer is connected to a metal foil of the PCB surface layer through a current-carrying structure, so that a current-carrying channel of the golden finger passes through the PCB surface layer and the PCB inner layer. The board edge interconnecting device includes the foregoing golden finger. In the embodiments, a current-carrying capacity of a PCB in the golden finger is increased without increasing a size and thickness of a copper foil of the PCB in the golden finger, thereby effectively improving the current-carrying capacity of the PCB in the golden finger.
Abstract:
A flexible printed circuit includes: a flexible substrate extending from a first end section to a second end section, and having an opening or a notch in proximity to the first end section; a first wiring layer extending from the first end section to the second end section so as to avoid the opening or the notch; a second wiring layer extending from the first end section to the second end section so as to block the opening or the notch; a first conductive member being formed opposed to the flexible substrate in relation to the first wiring layer and at least in proximity to the first end section in a region opposed to the first wiring layer, and being electrically connected to the first wiring layer; and a second conductive member electrically connected to the second wiring layer via the opening or the notch.
Abstract:
A method of producing a land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane.
Abstract:
A method of fabricating a wiring board includes forming a resist layer, such as a solder or plating resist layer, defining an opening portion on a support board such that a portion of the support board is exposed. An electrode is formed directly on the support board within the opening portion, and the plating resist layer, when used, is removed. An insulating layer is formed on the electrode, as well as the support board or solder resist layer, and a wiring portion connected to the electrode at the insulating layer is also formed. A solder resist layer having an opening portion is then formed on the wiring portion, and the support board is removed to expose a surface of the electrode or a surface of the electrode and insulating layer. Another solder resist layer having an opening portion may then be formed on the exposed surface of the insulating layer.
Abstract:
A laminated wiring board, includes: a first substrate in which a conductor circuit is formed on one surface of an insulating layer and an adhesive layer is formed on an other surface of the insulating layer, and conductors are formed in via holes that pass through the insulating layer and the adhesive layer so that the conductor circuit is partially exposed therefrom; an electronic component electrically connected to the conductor circuit by allowing electrodes of the electronic component to be connected to the conductors; an embedding member arranged around the electronic components so that the electronic component is embedded therein; and a second substrate having an adhesive layer laminated to face the adhesive layer of the first substrate and sandwich the electronic component and the embedding member, wherein each of the electrodes of the electronic component is continuous with the conductor circuit through two or more of the conductors.
Abstract:
A two-dimensional light source includes a base substrate having holes, wires disposed on a lower surface of the base substrate, a light emitting diode (LED) chip disposed on an upper surface of the base substrate, plugs that connect two electrodes of the LED chip to the wires through the holes, a buffer layer covering the LED chip, and an optical layer that is disposed on the buffer layer and has an optical pattern formed at a portion of the optical layer corresponding to the LED chip.