Abstract:
To achieve a large thickness of conductive metal-containing material in a feature of a product unit processed with a liquid-based etch process, the desired thickness of material is apportioned to the two opposing surfaces of a substrate to create a two-part feature. Conventional features are made by identically patterning two same-thickness metal-containing layers and electrically connecting the resulting patterned parts in any suitable manner. However, features may also be made that do not have identical parts on opposite sides of the substrate, the two parts being electrically connected but differing in thickness, in shape, or both. Moreover, having two metal-containing layers separated by an insulator is also useful for allowing different sections of the same feature or circuit to cross one another without shorting, or to overlap in whole or in part without shorting.
Abstract:
There is provided a metal/ceramic circuit board capable of eliminating discrepancy during mounting of parts to improve the reliability of mounting of the parts. The metal/ceramic circuit board has a ceramic substrate 10, and a metal circuit plate (a copper plate 14) bonded to the ceramic substrate 10, the metal circuit plate having a thickness which is more than 0.25 mm and which is less than 0.3 mm, and the metal circuit plate having a skirt spreading length (a dimensional difference between the bottom and top portion of the peripheral edge portion of the metal circuit plate) of less than 50 nullm.
Abstract:
Coplanar waveguides have a center signal line and a pair of ground lines on either side formed of a sputtered material such as gold (Au). Such waveguides are subject to what is known as the edge effect at high frequency operation causing currents to concentrate and flow along adjacent edges of the lines. Providing a thicker plated layer only on adjacent edges of the lines provide substantial performance improvements over sputtered lines alone while saving significant amount of Au, thus reducing costs.
Abstract:
According to the present invention, when a semiconductor element having protruding electrodes formed thereon is connected to a circuit board via conductive resin, stable connection is made even when an electrode pitch is small on the semiconductor element. On semiconductor element package regions on the circuit board, a paste electrode material containing photopolymerizable materials is printed to form a film having a prescribed thickness, and this electrode material film is baked after exposure and development thereof so as to obtain circuit electrodes having edges warped in a direction of going apart from the circuit board surface. Then, the protruding electrodes and the concave surfaces of the circuit electrodes are brought in abutment with each other and connected via the conductive resin which surrounds the abutments between the respective electrodes and is held on the concave surfaces of the circuit electrodes. With this arrangement, the concave surfaces of the circuit electrodes act as saucers and prevent the conductive resin from being squeezed out, thereby eliminating possible occurrence of short circuits.
Abstract:
A planar coil including and insulating substrate, and a coil conductive filament having a thickness of 20 to 400 &mgr;m and formed on at least one surface of the insulating substrate, the coil conductive filament having a gap whose aspect ratio (H/G) is at least 1. The coil conductive filament has a cross-section in a substantially mushroom shape having a head and a neck, the head has a width (L) which is a least twice as large as a width (l) of the neck thereof, at most 1.5 times as large as a height of the head, and at least twice as large as a minimum spacing (G) between adjacent coil conductive filaments.
Abstract:
A wiring board of the present invention readily controls a power source voltage and unwanted irradiation noises developed across a power source layer and a ground layer over a broad range of frequencies with a simple arrangement. The wiring board has an on-board surface on the surface of a dielectric substrate, on which a semiconductor device or the like is mounted, and a power source layer and a ground layer, which are made of a conductor material principally composed of at least one kind of element selected from Cu, W, and Mo, are provided on the back surface of the dielectric substrate or within the same. The periphery of at least one of low resistance areas of the power source layer and ground layer, respectively is provided with a corresponding high resistance area having a higher sheet resistance than that of the respective low resistance areas.
Abstract:
The invention relates to a microstrip arrangement comprising a first and a second microstrip conductor. The two microstrip conductors have essentially the same dimensions in their longitudinal direction and transverse direction, and are galvanically interconnected by means of at least one connection. The two microstrip conductors also extend essentially parallel to one another on either side of a dielectric material. As a result of this design of the microstrip arrangement, the field losses and also other influences caused by the dielectric material will be very considerably reduced, and in practice a resultant microstrip arrangement is obtained, which, with regard to its electrical performance, appears to be suspended in the air. Preferred embodiments comprise a microstrip antenna, a circuit board and a conductor application.
Abstract:
A process for etching the sides of a trace remove the feet which extend laterally out from the sides and over a circuit board substrate adjacent the trace.
Abstract:
A ceramic substrate pad used for establishing brazed connection between a pin and the substrate in the packaging of microelectronic semiconductor circuit chip. The pad is characterized by a stepped setback in the upper surface thereof which setback is oxidized to prevent wetting by the brazing alloy which bonds the pin to the pad. Stresses attributable to the brazing are isolated from the setback area and thus have reduced effect in causing cracking at the edges of the pad-substrate interface.
Abstract:
An insulating substrate for mounting semiconductor devices that is composed of a thin flat plate of inexpensive alumina (Al.sub.2 O.sub.3) preferably in the range of 0.26 to 0.29 mm in thickness. Copper foil sheets are applied to both sides of the flat plate with edges spaced a distance back from the end surface of the plate to increase air path distance between the edges of the sheets of foil applied to opposite sides of the plate. The difference in distance between the end surface of the alumina plate and the edges of each copper foil is 0.5 mm or less to balance thermal stress upon heating and cooling of semiconductors soldered to the copper foil.
Abstract translation:一种用于安装半导体器件的绝缘衬底,其由廉价氧化铝(Al 2 O 3)的薄平板优选在0.26至0.29mm的范围内。 将铜箔片施加到平板的两侧,其边缘与板的端面间隔开一段距离,以增加施加到板的相对侧的箔片的边缘之间的空气路径距离。 氧化铝板的端面与每个铜箔的边缘之间的距离差为0.5mm以下,以平衡焊接到铜箔的半导体的加热和冷却时的热应力。