Abstract:
A method and kit for precisely placing fine pitch surface-mount electronic components onto printed circuit boards. An alignment substrate having a pattern of solder pads and holes or transverse edges corresponding to the pattern of solder pads and holes or edges on a printed circuit board is secured to a base by registration pins fastened to the base and inserted into contact with said holes or edges. Generally, the alignment substrate is preferably another circuit board identical with the board to be bonded to the electrical component. A template having a pattern of recesses corresponding to the component lead pattern is secured over the alignment substrate. A component is placed on the template with leads in the recesses. The component is lifted away, a printed circuit board is placed over the template and the component is lower onto the board. The board with component in place can then be removed for soldering.
Abstract:
First and second transparent metallized gauge plates (52 and 52') of solder-nonwettable, heat-resistant material, such as glass or quartz, each have a solder wave test pattern in the form of spaced parallel metal strips (56 and 56') formed thereon. The metal strips (56) on the first gauge plate (52) are of progressively increasing widths, with a narrowest strip located adjacent one edge of the plate and a widest strip located adjacent an opposite edge of the plate. The metal strips 56' on the second gauge plate (52') are of uniform widths. The first gauge plate (52) is engaged with a solder wave (34) to measure the activation level of a soldering flux (44) being introduced into the solder wave, and thereby to determine the capability of the solder wave to produce properly soldered printed circuit board assemblies (10). The second gauge plate is engaged with the solder wave (34) to measure and/or adjust other flow characteristics of the solder wave, such as a width of solder wave impingement (80 ) on the printed circuit board assemblies (10).
Abstract:
A wiring board includes a first insulating layer, a pad formed on one surface of the first insulating layer, a second insulating layer, formed on the one surface of the first insulating layer, and including an opening exposing the pad, and a reinforcing metal layer formed in contact with the first insulating layer, and provided around the pad so as to be separated from the pad in a plan view. The pad is disposed inside the opening without making contact with the second insulating layer. An end, on a side of the first insulating layer, in a portion of an inner side surface of the opening of the second insulating layer makes contact with the reinforcing metal layer, and an end in another portion of the inner side surface of the opening of the second insulating layer makes contact with the one surface of the first insulating layer.
Abstract:
A circuit board according to an embodiment includes: a first insulation layer, a first circuit wire that is disposed on the first insulation layer, a second insulation layer that covers the first insulation layer and the first circuit wire, and includes a material that is different from that of the first insulation layer, and a third insulation layer that is disposed on the second insulation layer and includes a cavity. A bottom surface of the cavity is a top surface of the second insulation layer.
Abstract:
Tamper-respondent assemblies and methods of fabrication are provided which include at least one tamper-respondent sensor and a detector. The at least one tamper-respondent sensor includes conductive lines which form, at least in part, at least one tamper-detect network of the tamper-respondent sensor(s). In addition, the tamper-respondent sensor(s) includes at least one interconnect element associated with one or more conductive lines of the conductive lines forming, at least in part, the tamper-detect network(s). The interconnect element(s) includes at least one interconnect characteristic selected to facilitate obscuring a circuit lay of the at least one tamper-detect network. In operation, the detector monitors the tamper-detect network(s) of the tamper-respondent sensor(s) for a tamper event.
Abstract:
An array circuit board 11B includes a glass substrate, an IC chip 20, two ACFs 30, and a resin film 32. The IC chip 20 is disposed on the glass substrate. The ACFs 30 are disposed between the glass substrate and the IC chip 20 for electrically connecting the glass substrate and the IC chip 20 together. The ACFs 30 are separated from each other. The resin film 32 is made of resin material having cure shrinkage smaller than the ACFs 30 and disposed to fill a gap between the ACFs 30 adjacent to each other between the glass substrate and the IC chip 20.
Abstract:
In a high frequency signal line, a first signal line extends along a first dielectric element assembly, a first reference ground conductor extends along the first signal line, a second signal line is provided in or on the second dielectric element assembly and extends along the second dielectric element assembly, a second reference ground conductor is provided in or on the second dielectric element assembly and extends along the second signal line. A portion of a bottom surface at an end of the first dielectric element assembly and a portion of the top surface at an end of the second dielectric element assembly are joined together such that a joint portion of the first and second dielectric element assemblies includes a corner. The second signal line and the first signal line are electrically coupled together. The first and second reference ground conductors are electrically coupled together.
Abstract:
Embodiments of the present disclosure are directed toward techniques and configurations for electrical signal absorption in an interconnect disposed in a printed circuit board (PCB) assembly. In one instance, a PCB assembly may comprise a substrate, and an interconnect formed in the substrate to route an electrical signal within the PCB. The interconnect may be coupled with a connecting component that is disposed on a surface of the PCB. An absorbing material may be disposed on the PCB to be in direct contact with at least a portion of the connecting component to at least partially absorb a portion of the electrical signal. Other embodiments may be described and/or claimed.
Abstract:
Disclosed are various embodiments relating to an electronic device that includes a key An electronic device may include a housing having a through-hole formed therein. A key may be exposed through the through-hole and configured to be pressed. A key switch may be located on a rear surface of the key, wherein the key structure may be configured to enable the key to be pressed and to detect the press of the key. Moreover, a structure provided on a lower portion of the housing may be able to bear a pressure exerted by a user when pressing the key in a direction opposite the housing. Further, a dummy detachably provided between the housing and the structure, wherein the dummy, when being attached, may support the key and the key switch such that both are capable of being pressed in the through-hole toward the direction of the structure.