Abstract:
A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm≤L2−L1≤50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.
Abstract:
An organic light emitting diode (OLED) display includes a pixelated OLED display panel and a color-correction component disposed on the pixelated OLED display panel. The pixelated OLED display panel has a ratio of blue-to-red color mixing weights at 30 degrees of β030, and a ratio of blue-to-red color mixing weights at 45 degrees of β045, where β045≥β030≥1.05 and 1.5≥β045≥1.1. The color-correction component is configured such that a ratio of blue-to-red color mixing weights at 45 degrees of the display is β45 and a ratio of blue-to-red color mixing weights at 30 degrees of the display is β30, where β045−0.1≥β45≥2.1−β045 and β030−0.05≥β30≥2.05−β030. Methods of making OLED displays are described.
Abstract:
Polymeric films, which may be adhesive films, and display devices including such polymeric films, wherein a polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes a first polymeric matrix and particles. The first polymeric layer includes: a first polymeric matrix having a refractive index n1; and particles having a refractive index n2 uniformly dispersed within the first polymeric matrix; wherein the particles are present in an amount of less than 30 vol-%, based on the volume of the first polymeric layer, and have a particle size range of 400 nanometers (nm) to 3000 nm; and wherein n1 is different than n2.
Abstract:
Display devices that include: an organic light emitting diode panel having a multilayer construction including one or more adhesive films; and a polymeric film incorporated within the multilayer construction of the organic light emitting diode panel. The polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes: a first polymer region including a first material having a refractive index of n1; a second region including a network of interconnected pores and channels within the first polymer region; wherein the pores and channels comprise a second material having a refractive index of n2; wherein n1 is different than n2; wherein the first material includes a first elastic polymeric material and optional particles; and wherein the second material includes: a second polymeric material and optional particles; and/or air; and wherein the polymeric film has: a clarity of at least 90%; a visible light transmission of at least 80%; and a bulk haze of 25% to 80%.
Abstract:
Apparatus and method are described and useful for, among other things, providing a layer by layer coating of materials on a belt. A directional gas curtain producing element is used to provide a gas curtain blowing on the belt in an upstream direction that simultaneously meters liquid from the belt and dries the belt.
Abstract:
A security element, including: a substrate; a monolayer of beads on the substrate; and a metal layer on the monolayer of beads; wherein the size of the beads is in between about 100 nm to about 50 μm.
Abstract:
Polymeric films, which may be adhesive films, and display devices including such polymeric films, wherein a polymeric film includes: a first polymeric layer having two major surfaces, wherein the first polymeric layer includes a first polymeric matrix and particles. The first polymeric layer includes: a first polymeric matrix having a refractive index ni; and particles having a refractive index n2 uniformly dispersed within the first polymeric matrix; wherein the particles are present in an amount of less than 30 vol-%, based on the volume of the first polymeric layer, and have a particle size range of 400 nanometers (nm) to 3000 nm; and wherein ni is different than n2.
Abstract:
Material comprising sub-micrometer particles dispersed in a polymeric matrix. The materials are useful in article, for example, for numerous applications including display applications (e.g., liquid crystal displays (LCD), light emitting diode (LED) displays, or plasma displays); light extraction; electromagnetic interference (EMI) shielding, ophthalmic lenses; face shielding lenses or films; window films; antireflection for construction applications, and construction applications or traffic signs.
Abstract:
An adhesive article including a pressure sensitive adhesive layer and a release layer in contact with the pressure sensitive adhesive layer. The release layer includes a polymer matrix that includes polymerized (meth)acrylated silicone and a plurality of nanovoids.
Abstract:
An optical stack includes an optical film and an optical adhesive disposed on the optical film. The optical adhesive has a major structured surface facing away from the optical film that includes a plurality of channels formed therein. The channels define a plurality of substantially flat land regions therebetween. The land regions include at least about 50% of a total surface area of the major structured surface. When the optical stack is placed on a support surface with the major structured surface of the optical adhesive contacting the support surface, the optical stack bonds to the support surface and may be removed from, or slidingly repositioned on, the support surface without damage to the optical adhesive or the support surface, and upon application of at least one of heat and pressure, the optical stack substantially permanently bonds to the support surface and the plurality of channels substantially disappear.