Abstract:
An electrosurgical device including a reinforcing underlayment having a non-stick, anti-microbial coating. In one embodiment, the coating includes a non-stick material having anti-microbial particles interspersed in the non-stick material. This coating is applied to the surfaces of the electrode to minimize the build-up of charred tissue on the surfaces of the electrode. Also, the coating tends to kill harmful organisms residing on the surfaces of the electrode. In another embodiment, a primer coating is initially applied to the surfaces of the electrode. A plurality of anti-microbial particles are then applied to the primer coating layer and engage and are embedded in the primer coating layer. A top coat including a non-stick material is applied to the anti-microbial particle layer. In either embodiment, the coating layers applied to the surfaces of the electrode are cured to harden and adhere the layers to the electrode.
Abstract:
An electrosurgical device coated with powder coatings including a silicone resin and siloxane additive without fluoropolymers. In the powder coatings, the silicone resin is methyl phenyl silicone or phenyl silicone or methyl polysiloxane or phenyl alkyl polysiloxane resin and the additive is either methyl alkyl polysiloxane or dimethyl polysiloxane. This coating is applied to the surfaces of an electrosurgical device minimize the build-up of charred tissue on the surfaces of the electrosurgical device.
Abstract:
An apparatus and method for simultaneously coating and measuring a part. The apparatus includes a part support, a sprayer and a part measurer positioned adjacent to the part support and a display device positioned adjacent to the part support. The sprayer applies a coating to a section of the part while the part measurer continuously measures a dimension of the section of the part being coated. In one embodiment, an initial amount of coating and a final amount of coating are applied to the section of the part based on the dimension measurements and desired dimension of the part. In another embodiment, the amount of coating applied to the part is based on the desired coating thickness. As a result, the apparatus and method of the present invention significantly reduces the margin of error related to the application of coatings to parts.
Abstract:
An apparatus and method for simultaneously coating and measuring a part including a part support, a sprayer, a part measurer including a digital camera and a display device, all of which are positioned adjacent to the part support. The sprayer applies a coating to a section of the part while the part measurer continuously measures at least two dimensions of the section. The digital camera takes at least one picture of the entire section of the part while the part is being coated and enables a user to accurately determine the cross section of the part to the optimum finished part configuration and size and also detect defects, blemishes or coating irregularities formed on the section. The apparatus and method of the present invention significantly reduces the margin of error related to the application of coatings to parts, the number of defective parts and increases the overall efficiency.
Abstract:
A reinforcing underlayment including dry uniform particles evenly applied to a wet bonding material layer on a surface of a substrate. The substrate, including the layers, is then cured to harden the one or more of the layers. A final coating or topcoat is applied to the cured surface of the substrate. The dry particles are evenly distributed onto the bonding material layer creating a uniform surface for subsequent coatings. The dry particles increase the strength of the liquid coatings increasing solid particle density within the coating system and thereby imparting properties not available for the liquid coatings. The present invention enables a user to easily introduce very heavy, dense, strong particles into a liquid coating and allows the user to apply very dense, heavy particles into and onto a wet bonding material layer followed by a subsequent wet topcoat layer which is cured as one contiguous material with reinforcement and underlayment strengthening coming from the added, dry particles.
Abstract:
A coated string for a stringed device which includes a coating applied to the surface of the string. The coating includes a base layer bonded to the surface of the string and an at least partially transparent low-friction top coat applied to the base layer. The base layer includes heat activated pigments that change color when heated above a color shifting temperature. In one embodiment, the color of the pigment in one area contrasts with the color of the pigment in an adjacent area without otherwise affecting the low-friction surface of the coating. The areas of different color created in locations along the length of the low-friction coated string.
Abstract:
A reinforcing underlayment including dry uniform particles evenly applied to a wet bonding material layer on a surface of a substrate. The substrate, including the layers, is then cured to harden the one or more of the layers. A final coating or topcoat is applied to the cured surface of the substrate. The dry particles are evenly distributed onto the bonding material layer creating a uniform surface for subsequent coatings. The dry particles increase the strength of the liquid coatings increasing solid particle density within the coating system and thereby imparting properties not available for the liquid coatings. The present invention enables a user to easily introduce very heavy, dense, strong particles into a liquid coating and allows the user to apply very dense, heavy particles into and onto a wet bonding material layer followed by a subsequent wet topcoat layer which is cured as one contiguous material with reinforcement and underlayment strengthening coming from the added, dry particles.
Abstract:
A method of manufacturing a coated medical device, includes applying a first low-friction coating to a surface of the medical device. The first low-friction coating includes a first colored pigment, such as a relatively light colored pigment. After applying the first low-friction coating, a suitable laser and laser energy is selectively applied to different areas of the coated medical device. The laser ablates or removes the first low-friction coating (at the different areas of the medical device) to leave the bare metal substrate of the medical device exposed. After selectively removing one or more portions of the first low-friction coating, a second low-friction coating is applied to the exposed bare metal substrate of the medical device and suitably cured. The second low-friction coating includes a second colored pigment, such as a relatively dark colored pigment, wherein the second colored pigment contrasts the first colored pigment of the first low-friction coating.
Abstract:
A coated string for a stringed device which includes a coating applied to the surface of the string. The coating includes a base layer bonded to the surface of the string and an at least partially transparent low-friction top coat applied to the base layer. The base layer includes heat activated pigments that change color when heated above a color shifting temperature. In one embodiment, the color of the pigment in one area contrasts with the color of the pigment in an adjacent area without otherwise affecting the low-friction surface of the coating. The areas of different color created in locations along the length of the low-friction coated string.
Abstract:
An electrosurgical device including a reinforcing underlayment having a non-stick, anti-microbial coating. In one embodiment, the coating includes a non-stick material having anti-microbial particles interspersed in the non-stick material. This coating is applied to the surfaces of the electrode to minimize the build-up of charred tissue on the surfaces of the electrode. Also, the coating tends to kill harmful organisms residing on the surfaces of the electrode. In another embodiment, a primer coating is initially applied to the surfaces of the electrode. A plurality of anti-microbial particles are then applied to the primer coating layer and engage and are embedded in the primer coating layer. A top coat including a non-stick material is applied to the anti-microbial particle layer. In either embodiment, the coating layers applied to the surfaces of the electrode are cured to harden and adhere the layers to the electrode.