Abstract:
A magnetic gun lens and an electrostatic gun lens can be used in an electron beam apparatus and can help provide high resolutions for all usable electron beam currents in scanning electron microscope, review, and/or inspection uses. An extracted beam can be directed at a wafer through a beam limiting aperture using the magnetic gun lens. The electron beam also can pass through an electrostatic gun lens after the electron beam passes through the beam limiting aperture.
Abstract:
A scanning electron microscopy system includes an electron beam source, a sample stage that includes a first alignment feature, an electron-optical column that includes electron-optical elements that include a lens having a second alignment feature, and an alignment plate having a third alignment feature. The system additionally includes a reference target, and a detector assembly. The electron-optical elements configurable to simultaneously focus on a substrate and the reference target. The system also includes a controller communicatively coupled to at least one or more portions of the electron-optical column and the sample stage, to make adjustments in order to align the electron beam to at least one of the first set of alignment features, the second set of alignment features, the third set of alignment features, the reference target or the substrate. The controller also makes adjustments to simultaneously focus the electron beam at a first and second high resolution plane.
Abstract:
An electron beam apparatus addresses blanking issues resulting from sinking high-power heat onto an aperture diaphragm by evenly spreading heat on the aperture diaphragm. The apparatus can include an aperture diaphragm and a deflector that deflects the electron beam on the aperture diaphragm. The electron beam is directed at the aperture diaphragm in a pattern around the aperture. The pattern may be a circle, square, or polygon. The pattern also may include a variable locus relative to the aperture.
Abstract:
A scanning electron microscopy system includes an electron beam source, a sample stage that includes a first alignment feature, an electron-optical column that includes electron-optical elements that include a lens having a second alignment feature, and an alignment plate having a third alignment feature. The system additionally includes a reference target, and a detector assembly. The electron-optical elements configurable to simultaneously focus on a substrate and the reference target. The system also includes a controller communicatively coupled to at least one or more portions of the electron-optical column and the sample stage, to make adjustments in order to align the electron beam to at least one of the first set of alignment features, the second set of alignment features, the third set of alignment features, the reference target or the substrate. The controller also makies adjustments to simultaneously focus the electron beam at a first and second high resolution plane.
Abstract:
A scanning electron microscopy system for mitigating charging artifacts includes a scanning electron microscopy sub-system for acquiring multiple images from a sample. The images include one or more sets of complementary images. The one or more sets of complementary images include a first image acquired along a first scan direction and a second image acquired along a second scan direction opposite to the first scan direction. The system includes a controller communicatively coupled to the scanning electron microscopy sub-system. The controller is configured to receive images of the sample from the scanning electron microscopy sub-system. The controller is further configured to generate a composite image by combining the one or more sets of complementary images.
Abstract:
A scanning electron microscopy system is disclosed. The system includes an electron beam source configured to generate a primary electron beam. The system includes a sample stage configured to secure a sample. The system includes a set of electron-optical elements configured to direct at least a portion of the primary electron beam onto a portion of the sample. The set of electron-optical elements includes an upper deflector assembly and a lower deflector assembly. The upper deflect assembly is configured to compensate for chromatic aberration in the primary electron beam caused by the lower deflector assembly. In addition, the system includes a detector assembly positioned configured to detect electrons emanating from the surface of the sample.
Abstract:
An electron beam device for inspecting a target substrate or specimen thereon includes a beam separator with an asymmetric quadrupole electrostatic deflector for improving field uniformity for a single direction of deflection. The asymmetric quadrupole electrostatic deflector includes two orthogonal electrode plates spanning roughly 60 degrees and two electrode plates spanning roughly 120 degrees, the two latter plates defining a unidirectional deflection field. The device generates a primary electron beam and focuses the primary electron beam along an optical axis into the target substrate. Secondary electrons detected at the target substrate are focused into a secondary electron beam. The beam separator with asymmetric quadrupole electrostatic deflector deflects the secondary electron beam away from the axis of the primary electron beam in the direction of deflection and into a detector array.
Abstract:
Systems and methods to focus and align multiple electron beams are disclosed. A camera produces image data of light from electron beams that is projected at a fiber optics array with multiple targets. An image processing module determines an adjustment to a voltage applied to a relay lens, a field lens, or a multi-pole array based on the image data. The adjustment minimizes at least one of a displacement, a defocus, or an aberration of one of the electron beams. Using a control module, the voltage is applied to the relay lens, the field lens, or the multi-pole array.
Abstract:
Objective lens alignment of a scanning electron microscope review tool with fewer image acquisitions can be obtained using the disclosed techniques and systems. Two different X-Y voltage pairs for the scanning electron microscope can be determined based on images. A second image based on the first X-Y voltage pair can be used to determine a second X-Y voltage pair. The X-Y voltage pairs can be applied at the Q4 lens or other optical components of the scanning electron microscope.
Abstract:
An electron-optical system for inspecting or reviewing an edge portion of a sample includes an electron beam source configured to generate one or more electron beams, a sample stage configured to secure the sample and an electron-optical column including a set of electron-optical elements configured to direct at least a portion of the one or more electron beams onto an edge portion of the sample. The system also includes a sample position reference device disposed about the sample and a guard ring device disposed between the edge of the sample and the sample position reference device to compensate for one or more fringe fields. One or more characteristics of the guard ring device are adjustable. The system also includes a detector assembly configured to detect electrons emanating from the surface of the sample.