Abstract:
The present disclosure relates to an integrated chip structure including a MEMS actuator. The MEMS actuator includes an anchor having a first plurality of branches extending outward from a central region of the anchor. The first plurality of branches respectively include a first plurality of fingers. A proof mass surrounds the anchor and includes a second plurality of branches extending inward from an interior sidewall of the proof mass. The second plurality of branches respectively include a second plurality of fingers interleaved with the first plurality of fingers as viewed in a top-view. One or more curved cantilevers are coupled between the proof mass and a frame wrapping around the proof mass. The one or more curved cantilevers have curved outer surfaces having one or more inflection points as viewed in the top-view.
Abstract:
The present disclosure relates integrated chip structure including a MEMS actuator. The MEMS actuator includes an anchor having a first plurality of branches extending outward from a central region of the anchor. The first plurality of branches respectively include a first plurality of fingers. A proof mass surrounds the anchor and includes a second plurality of branches extending inward from an interior sidewall of the proof mass. The second plurality of branches respectively include a second plurality of fingers interleaved with the first plurality of fingers as viewed in a top-view. One or more curved cantilevers are coupled between the proof mass and a frame wrapping around the proof mass. The one or more curved cantilevers have curved outer surfaces having one or more inflection points as viewed in the top-view.
Abstract:
A device includes a first layer of an electrically insulating material and a second layer of a non-electrically insulating material (e.g., semiconductor or electrically conductive) extending on the first layer. The second layer is structured so as to define opposite, lateral walls of a microchannel, a bottom wall of which is defined by an exposed surface of the first layer. The second layer is further structured to form one or more electrical insulation barriers; each barrier includes a line of through holes, each surrounded by an oxidized region of the material of the second layer. The through holes alternate with oxidized portions of the oxidized region along the line. Each barrier extends, as a whole, laterally across the second layer up to one of the lateral walls and delimits two sections of the second layer on each side of the barrier and on a same side of the microchannel.
Abstract:
Disclose is a method for fabricating a semiconductor device. The method includes: forming a groove such as by etching one side surface of a first substrate; attaching a second substrate including a silicon layer on the etched surface of the first substrate formed with the hollow groove; etching the second substrate so as to leave substantially only the silicon layer; forming a thin film structure on the surface of silicon layers of the second substrate; and separating the second substrate formed with the thin film structure from the first substrate. For example, the groove structure may be formed in the lower portion of the device in the process of fabricating the semiconductor device to facilitate the final device separation.
Abstract:
Deep via technology is used to construct an integrated silicon cantilever and cavity oriented in a vertical plane which creates an electrostatically-switched MEMS switch in a small wafer area. Another embodiment is a small wafer area electrostatically-switched, vertical-cantilever MEMS switch wherein the switch cavity is etched within a volume defined by walls grown internally within a silicon substrate using through vias.
Abstract:
Techniques for preventing bending/buckling of suspended micro/nanostructures during oxidation are provided. In one aspect, a method for oxidizing a structure is provided. The method includes providing the structure having at least one suspended element selected from the group consisting of: a microstructure, a nanostructure and a combination thereof; surrounding the at least one suspended element in a cladding material; and oxidizing the at least one suspended element through the cladding material, wherein the cladding material physically constrains and thereby prevents distortion of the at least one suspended element during the oxidation.
Abstract:
The fabrication of a semiconductor fixed structure defining a volume, for example of a MEMS micro electro-mechanical system includes, determining thicknesses beforehand depending on the functional distances associated with elements. At least one element is formed on a substrate by thermal oxidation of the substrate so as to form an oxide layer followed by selective etching of the oxide layer so as to define the volume in an etched portion by baring the underlying substrate so as to define the element in an unetched portion, and later oxidation of the substrate so as to form an oxide layer, in order to obtain the elements at the functional distances.
Abstract:
To form an isolation structure in a semiconductor substrate, at least two trenches are formed with a rib therebetween in the semiconductor substrate, and then the semiconductor material in the area of the trenches and particularly the rib is converted to an electrically insulating material. For example, this is accomplished by thermal oxidation of silicon semiconductor material of the rib.
Abstract:
It is intended to provide a membrane structure element that can be easily manufactured, has an excellent insulating property and high quality; and a method for manufacturing the membrane structure element. The manufacturing method is for manufacturing a membrane structure element including a membrane formed of a silicon oxide film and a substrate which supports the membrane in a hollow state by supporting a part of a periphery of the membrane. The method includes: a film formation step of forming a heat-shrinkable silicon oxide film 13 on a surface of a silicon substrate 2 by plasma CVD method; a heat treatment step of performing a heat treatment to cause the thermal shrinkage of the silicon oxide film 13 formed on the substrate 1; and a removal step of removing a part of the substrate 2 in such a manner that a membrane-corresponding part of the silicon oxide film 13 is supported as a membrane in a hollow state with respect to the substrate 2 to form a recessed part 4.
Abstract:
A method of fabricating a thick silicon dioxide layer without the need for long deposition or oxidation and a device having such a layer are provided. Deep reactive ion etching (DRIE) is used to create high-aspect ratio openings or trenches and microstructures or silicon pillars, which are then oxidized and/or refilled with LPCVD oxide or other deposited silicon oxide films to create layers as thick as the DRIE etched depth allows. Thickness in the range of 10-100 nullm have been achieved. Periodic stiffeners perpendicular to the direction of the trenches are used to provide support for the pillars during oxidation. The resulting SiO2 layer is impermeable and can sustain large pressure difference. Thermal tests show that such thick silicon dioxide diaphragms or layers can effectively thermally isolate heated structures from neighboring structures and devices within a distance of hundred of microns. Such SiO2 diaphragms or layers of thickness 50-60 nullm can sustain an extrinsic shear stress up to 3-5 Mpa. These thick insulating microstructures or layers can be used in thermal, mechanical, fluidic, optical, and bio microsystems.