PHOTODETECTOR DEVICE
    11.
    发明公开

    公开(公告)号:US20230358607A1

    公开(公告)日:2023-11-09

    申请号:US18223277

    申请日:2023-07-18

    Abstract: A photodetector device includes an avalanche photodiode array substrate formed from compound semiconductor. A plurality of avalanche photodiodes arranged to operate in a Geiger mode are two-dimensionally arranged on the avalanche photodiode array substrate. A circuit substrate includes a plurality of output units which are connected to each other in parallel to form at least one channel. Each of the output units includes a passive quenching element and a capacitative element. The passive quenching element is connected in series to at least one of the plurality of avalanche photodiodes. The capacitative element is connected in series to at least one of the avalanche photodiodes and is connected in parallel to the passive quenching element.

    DESIGN FOR REDUCING DARK COUNT RATE OF SNSPD BASED ON TWO-WIRE STRUCTURE

    公开(公告)号:US20230304857A1

    公开(公告)日:2023-09-28

    申请号:US18011394

    申请日:2021-04-07

    Abstract: The present invention discloses a design for reducing a dark count rate of a superconducting nanowire single photon detector (SNSPD) based on a two-wire structure, which includes: intertwining two niobium nitride nanowires that are not crossed to form an SNSPD of a two-wire structure; regulating and controlling behaviors of one nanowire by adopting the other nanowire, and regulating bias current to be close to superconducting critical current; introducing an optical signal into a photosensitive area of the detector by adopting an optical fiber; outputting two channels of signals respectively through the two nanowires to make the dark count rates of the two nanowires mutually excited; and through a voltage comparator and an exclusive-OR gate, reducing a dark count rate signal, and retaining a photon response signal. The generation of the dark count rate of the detector can be inhibited effectively by the unique performance of the SNSPD of the two-wire structure; and by improving the process latter, the coupling efficiency of the dark count rate of the SNSPD is further improved, which is expected to completely inhibit the dark count rate of the SNSPD system and greatly increase the signal-to-noise ratio of the detector.

    SUPERCONDUCTING NANOWIRE SINGLE PHOTON DETECTOR

    公开(公告)号:US20230266163A1

    公开(公告)日:2023-08-24

    申请号:US17264844

    申请日:2020-11-30

    CPC classification number: G01J1/44 G01J2001/442 B82Y15/00

    Abstract: The present invention discloses a superconducting nanowire single photon detector, comprises an arced fractal nanowire structure and the optical cavity structure; the arced fractal nanowire structures being used to alleviate the current-crowding effect and realize that the detection efficiency is insensitive to the polarization states of incident photons, and the arced fractal nanowire structures including parallel-connected arced fractal nanowires and serial-connected arced fractal nanowires; the optical cavity structure being used to achieve simultaneous optimization of the internal quantum efficiency and the absorption efficiency. The invention can be widely used in many fields such as optical communication, single-photon imaging, fluorescence detection, quantum optics, etc. The excellent performance of the detector can significantly promote the development and progress of these fields.

    METHOD AND APPARATUS CONFIGURED TO COUNT N-PHOTON EVENTS

    公开(公告)号:US20230175886A1

    公开(公告)日:2023-06-08

    申请号:US17920054

    申请日:2021-04-23

    Abstract: An apparatus is configured to count N-photon events within a time-dependent sequence of events of interactions of a plurality of photons with a light sensitive detector. The apparatus includes a signal-processing device and the light sensitive detector. An N-photon event represents an occurrence of at least N timely overlapping single photon events. The light sensitive detector is adapted to generate a time-dependent digital signal comprising digital patterns representing the time-dependent sequence of events from the detection of the plurality of photons with the light sensitive detector. Each digital pattern in the digital signal comprises a digital pattern width having a continuous sequence of digital values representing at least one event of interaction of at least one photon with the light sensitive detector. The signal-processing device is adapted to identify N-photon events from the digital patterns in the digital signal in dependence from the respective digital pattern width.

    Systems and methods for improving imaging by sub-pixel calibration

    公开(公告)号:US09927539B2

    公开(公告)日:2018-03-27

    申请号:US15613998

    申请日:2017-06-05

    Abstract: A radiation detector assembly is provided that includes a semiconductor detector having a surface, plural pixelated anodes, and at least one processor. The pixelated anodes are disposed on the surface. Each pixelated anode is configured to generate a primary signal responsive to reception of a photon by the pixelated anode and to generate at least one secondary signal responsive to an induced charge caused by reception of a photon by at least one adjacent anode. The at least one processor is operably coupled to the pixelated anodes. The at least one processor configured to define sub-pixels for each pixelated anode; acquire signals corresponding to acquisition events from the pixelated anodes; determine sub-pixel locations for the acquisition events using the signals; and apply at least one calibration parameter on a per sub-pixel basis for the acquisition events based on the determined sub-pixel locations.

Patent Agency Ranking