Abstract:
An optical filter 2 is disposed on an image sensor 12 including a plurality of sensor pixels 12a which are aligned, and includes a elongated translucent substrate 4; a first optical filter layer 6 laminated on the translucent substrate 4, and a second optical filter layer 8 laminated on the first optical filter layer 6. The translucent substrate 4 includes a photodetecting part 4a which is long in the alignment direction X of the sensor pixels 12a and disposed on the image sensor 12; and a frame part 4b surrounding the photodetecting part 4a. The photodetecting part 4a includes a light transmitting region 41a on one side in the longitudinal direction of the photodetecting part 4a; a first filter region 42a adjacent to the light transmitting region 41a in the longitudinal direction of the photodetecting part 4a, and a second filter region 43a which is adjacent to the first filter region 42a in the longitudinal direction of the photodetecting part 4a and disposed on the side opposite to the light transmitting region 41a across the first filter region 42a. The first optical filter layer 6 covers the first and second filter regions 42a and 43a and the frame part 4b, and the second optical filter layer 8 covers the second filter region 43a and the frame part 4b.
Abstract:
In luminance priority multilayer color film, one of the layers substantially matches the luminance sensitivity of the human eye. This luminance layer distinguishes from prior art color films that have a blue, a green, and a red sensitive layer. This luminance layer has the priority front position to sense light before being diffused and attenuated by other layers, giving the luminance record enhanced speed and clarity compared to prior art blue-priority color film. In another embodiment, a layered CCD sensor has a top silicon layer that is sensitive to all colors, followed by a yellow filter, a second silicon layer responsive to green and red light only because of the yellow filter, a cyan filter, and a bottom silicon layer receiving only green light. An image from a luminance-priority color sensor inputs to a color space conversion to recover full color. In the preferred embodiment, a luminance layer on top maps to a luminance “Y” value, and underlying color sensitive layers are used in conjunction with the luminance to derive the “U” and “V” chrominance vectors of YUV color space.
Abstract:
An optical thin film filter for the spatial and spectral separation of two or more transmitting bands of radiant energy. For a two band filter the filter has a substrate substantially transparent to radiant energy in the transmitted bands. On one surface of said substrate is a multilayer interference coating that transmits both wavelength bands of interest. On the other surface of said substrate (or on the same surface) are two sets of non-overlapping butted, parallel stripes with one set being alternately interspersed with the other. The widths of said stripes are varied to provide for precisely defined regions of spatial and spectral delineation. One set of stripes is capable of transmitting one of the bands of interest and reflecting all others, while the second set of stripes is capable of transmitting at least one band different from the one band transmitted by said first set of stripes and reflecting all others. Each of the stripes in itself is a multilayer interference coating formed of a plurality of high and low index of refraction materials.
Abstract:
A multi-point spectral system includes an imaging lens, an image capturing module and a multiwavelength filter (MWF) disposed between the imaging lens and the image capturing module. The MWF has a plurality of narrow-bandpass filter (NBPF) units arranged in an array, and each of the plurality of NBPF units has a respective predetermined central transmitted wavelength. The multi-point spectral system is provided to capture plural spectral images of a scene, which contain spectral or color information of the scene. The multi-point spectral system may utilize the information of the plural spectral images to recognize features revealed at the scene.
Abstract:
A radiation detector comprising a plurality of detector elements (1, 2, 3) each having an active region (14, 24, 34) provided for radiation reception and for signal generation, the detector elements being monolithically integrated into a semiconductor body (5) of the radiation detector, a signal that is to be generated in a first detector element being able to be tapped off separately from a signal that is to be generated in a second detector element, and at least one of the active regions being designed for radiation reception in the visible spectral range.
Abstract:
A color image capture element comprises a plurality of color component photoelectric conversion elements, each disposed with a color filter on a light receiving surface for respectively transmitting different color components, for receiving incoming light and selectively outputting respective color signals corresponding to the intensity of the different color components, and an infrared component photoelectric conversion element, disposed with an infrared transmitting filter on a light receiving surface for transmitting an infrared component, for selectively outputting an infrared signal. This enables the infrared component included in at least one of a plurality of color signals to be corrected, thereby improving the sensitivity of a color image capture apparatus.
Abstract:
An optical thin film filter for the spatial and spectral separation of two or more transmitting bands of radiant energy. For a two band filter the filter has a substrate substantially transparent to radiant energy in the transmitted bands. On one surface of said substrate is a multilayer interference coating that transmits both wavelength bands of interest. On the other surface of said substrate (or on the same surface) are two sets of non-overlapping butted, parallel stripes with one set being alternately interspersed with the other. The widths of said stripes are varied to provide for precisely defined regions of spatial and spectral delineation. One set of stripes is capable of transmitting one of the bands of interest and reflecting all others, while the second set of stripes is capable of transmitting at least one band different from the one band transmitted by said first set of stripes and reflecting all others. Each of the stripes in itself is a multilayer interference coating formed of a plurality of high and low index of refraction materials.
Abstract:
A color photosensitive device includes a transparent base plate and a lamination of alternate layers of transparent conductive films and photoelectric conversion layers. The photoelectric conversion layers are sensitive to light of increasing wavelength as the distance from the base plate increases. The photoelectric conversion layers comprise amorphous silicone and the transparent conductive films comprise an oxide of indium, tin, or the like.
Abstract:
A multi-point spectral system includes an imaging lens, an image capturing module and a multiwavelength filter (MWF) disposed between the imaging lens and the image capturing module. The MWF has a plurality of narrow-bandpass filter (NBPF) units arranged in an array, and each of the plurality of NBPF units has a respective predetermined central transmitted wavelength. The multi-point spectral system is provided to capture plural spectral images of a scene, which contain spectral or color information of the scene. The multi-point spectral system may utilize the information of the plural spectral images to recognize features revealed at the scene.
Abstract:
A photodetector includes a semiconductor substrate; a light receiving part for signal detection and an infrared light receiving part which are formed in the semiconductor substrate and are covered at least by first color filters having a common color; and second color filters which overlap with the first color filters on the infrared light receiving part and are configured to block light in a wavelength range transmitting through the first color filters.