Abstract:
The disclosure relates to a method for making field emission cathode. A microchannel plate is provided. The microchannel plate includes a first surface and a second surface opposite to the first surface. The microchannel plate defines a number of holes extending through the microchannel plate from the first surface to the second surface. The plurality of holes are filled with a carbon nanotube slurry. The carbon nanotube slurry is adhered on inner walls of the plurality of holes. The carbon nanotube slurry in the plurality of holes is solidified.
Abstract:
The present invention provides a compact medical X-ray imaging apparatus, which is a portable X-ray imaging apparatus capable of capturing clear X-ray images while maintaining low radiation exposure. The compact medical X-ray imaging apparatus comprises of: a carbon nanostructure triode cold cathode X-ray tube that radiates X-rays; an X-ray image sensor that captures an image of X-rays that pass through a patient; The first detector that detects the X-ray radiation dose and is positioned between the carbon nanostructure triode cold cathode X-ray tube and the X-ray image sensor, while out of the X-ray irradiation area for the imaging sensor; the second detector that detects the X-ray dose and is positioned in the center on one side of the X-ray image sensor frame; the third detector that detects the X-ray dose and is positioned on the other side of the X-ray image sensor frame facing to the second detector with the detection surface of the image sensor in between the second and third detector; a power supply which supplies a negative and a positive high-voltage pulse to the cathode and anode of the carbon nanostructure triode cold cathode X-ray tube respectively; and an X-ray imaging controller which acquires detection data from the first detector, second detector and third detector in addition to the distance from the carbon nanostructure triode cold cathode X-ray tube to the X-ray image sensor, calculates the X-ray radiation dose and amount of decay, determines the optimum X-ray dose for the patient and the voltage of the carbon nanostructure triode cold cathode X-ray tube, controls the pulse number and pulse width of the high-voltage pulse of the carbon nanostructure triode cold cathode X-ray tube, as well as the voltage of the cathode and the anode with feedback control means.
Abstract:
An electron emission device includes a number of first electrodes and a number of second electrodes intersected with each other to define a number of intersections. An electron emission unit is sandwiched between the first electrode and the second electrode at each of the number of intersections, wherein the electron emission unit includes a semiconductor layer and an insulating layer stacked together, the semiconductor layer defines a number of holes, the carbon nanotube layer covers the number of holes, and a portion of the carbon nanotube layer is suspended on the number of holes.
Abstract:
An apparatus for displaying a scene with light in a range of infrared wavelengths, includes: an array of elements configured to emit light in a range of infrared wavelengths, each element having one or more nanotubes; a stimulator configured to apply a stimulus to each element in the array in order for each element to emit light in the range of infrared wavelengths; and a processor configured to send a signal to the stimulator in order to apply the stimulus to one or more selected elements in the array to display the scene.
Abstract:
The disclosure relates to a method for making field emission cathode. A microchannel plate is provided. The microchannel plate includes a first surface and a second surface opposite to the first surface. The microchannel plate defines a number of holes extending through the microchannel plate from the first surface to the second surface. The plurality of holes are filled with a carbon nanotube slurry. The carbon nanotube slurry is adhered on inner walls of the plurality of holes. The carbon nanotube slurry in the plurality of holes is solidified.
Abstract:
The present invention relates to a conductive nanostructure, a method for molding the same, and a method for manufacturing a field emitter using the same. More particularly, the present invention relates to a field-emitting nanostructure comprising a conductive substrate, a conductive nanostructure arranged on the conductive substrate, and a conductive interfacial compound disposed in the interface between the conductive substrate and the conductive nanostructure, as well as to a method for molding the same, and a method for manufacturing a field emitter using the same.
Abstract:
A method for fabricating field emission cathode, a field emission cathode, and a field emission lighting source are provided. The method includes: forming a catalyst crystallite nucleus layer on the surface of cathode substrate by self-assembly of a noble metal catalyst, growing a composited nano carbon material on the cathode substrate by using a TCVD process, in which the composited nano carbon material includes coil carbon nano tubes and coil carbon nano fibers. The measured quantity of total coil carbon nano tubes and coil carbon nano fibers is higher than 40%. The field emission cathode is fabricated by the aforementioned method, and the field emission lighting source includes the aforementioned field emission cathode.
Abstract:
The present invention provides a method of forming a self-assembly fullerene array on the surface of a substrate, comprising the following steps: (1) providing a substrate; (2) pre-annealing the substrate at a temperature ranging from 200° C. to 1200° C. in a vacuum system; and (3) providing powdered fullerene nanoparticles and depositing them on the surface of the substrate by means of physical vapor deposition technology in the vacuum system, so as to form a self-assembly fullerene array on the surface of the substrate. The present invention also provides a fullerene embedded substrate prepared therefrom, which has excellent field emission properties and can be used as a field emitter for any field emission displays.Finally, the present invention provides a fullerene embedded substrate prepared therefrom, which can be used to substitute for semiconductor carbides as optoelectronic devices and high-temperature, high-power, or high-frequency electric devices.
Abstract:
Described is a lateral field emission device emitting electrons in parallel with respect to a substrate. Electron emission materials having a predetermined thickness are arranged in a direction with respect to the substrate on a supporting portion. An anode is disposed on a side portion of the substrate, the anode corresponding to the electron emission materials.
Abstract:
A field emission electron source includes a carbon nanotube micro-tip structure. The carbon nanotube micro-tip structure includes an insulating substrate and a patterned carbon nanotube film structure. The insulating substrate includes a surface. The surface includes an edge. The patterned carbon nanotube film structure is partially arranged on the surface of the insulating substrate. The patterned carbon nanotube film structure includes two strip-shaped arms joined at one end to form a tip portion protruded from the edge of the surface of the insulating substrate and suspended. Each of the two strip-shaped arms includes a plurality of carbon nanotubes parallel to the surface of the insulating substrate. A field emission device is also disclosed.