Abstract:
A beam line system includes a hollow tube and a plurality of protruding structures. The hollow tube has an inlet and an outlet. An ion beam emitted by the ion implanter is introduced into the hollow tube through the inlet and exited from the hollow tube through the outlet. The protruding structures are formed on an inner wall of the hollow tube. Each of the protruding structures has a reflective surface for reflecting a portion of the ion beam.
Abstract:
A guide tube for an ion beam in an ion implanter which is located adjacent a semiconductor wafer being implanted has an outwardly tapering central bore, thereby alleviating problems of beam strike as the ion beam passes through the guide tube.
Abstract:
A system and method for magnetically filtering an ion beam during an ion implantation into a workpiece is provided, wherein ions are emitted from an ion source and accelerated the ions away from the ion source to form an ion beam. The ion beam is mass analyzed by a mass analyzer, wherein ions are selected. The ion beam is then decelerated via a decelerator once the ion beam is mass-analyzed, and the ion beam is further magnetically filtered the ion beam downstream of the deceleration. The magnetic filtering is provided by a quadrapole magnetic energy filter, wherein a magnetic field is formed for intercepting the ions in the ion beam exiting the decelerator to selectively filter undesirable ions and fast neutrals.
Abstract:
A guide tube for an ion beam in an ion implanter which is located adjacent a semiconductor wafer being implanted has an outwardly tapering central bore, thereby alleviating problems of beam strike as the ion beam passes through the guide tube.
Abstract:
The ionization chamber is defined by a removable block disposed in heat transfer relationship to a temperature controlled mounting block, preferably the removable block comprised of graphite, silicon carbide or aluminum. The ion source includes a mounting flange for joining the ion source to the housing of an ion implanter, the ionization chamber being located on the inside of the mounting flange and the vaporizer being removably mounted to the exterior of the mounting flange via at least one isolation valve which is separable from the mounting flange with the vaporizer, enabling the vaporizer charge volume to be isolated by the valve in closed position during handling, preferably there being two isolation valve in series, one unified with and transportable with a removed vaporizer unit, and one constructed to remain with and isolate the remainder of the ion source from the atmosphere. In certain preferred embodiments, two such vaporizers are provided, enabling one to be absent, while being charged or serviced, while the other operates, or enabling two different materials to be vaporized without maintenance of the ion source, or enabling additional quantities of the same materials to be present to enable a protracted implant run.
Abstract:
A method includes generating an ion beam having ions at a first charge state, accelerating the ions at the first charge state to a final energy, altering the first charge state to a second charge state for some of said ions, the second charge state less than the first charge state, providing an ion beam having ions at the second charge state and parasitic beamlets having ions at a charge state different than the second charge state, directing the ion beam having ions at the second charge state towards a wafer, and directing the parasitic beamlets away from the wafer. An ion implanter having a charge exchange apparatus is also provided.
Abstract:
A method to increase low-energy beam current according to this invention is applied to an irradiation system with ion beam comprising a beam generation source, a mass analysis device, a beam transformer, a deflector for scanning, a beam parallelizing device, an acceleration/deceleration device, and an energy filtering device. The beam transformer comprises a vertically focusing DC quadrupole electromagnet QD and a longitudinally focusing DC quadrupole electromagnet QF. The beam transformer transforms a beam having a circular cross-section or an elliptical or oval cross-section to the beam has an elliptical or oval cross-section that is long in the scan direction in all the region of a beam line after deflection for scanning.
Abstract:
Methods and apparatus are disclosed for removing particles from an ion implantation chamber by introducing at least one sacrificial wafer into the implanter and subjecting it to ion implantation. As the sacrificial wafer is exposed to the ion beam, it becomes charged. Particles present in the implantation chamber are then drawn to a charged wafer surface by electrostatic forces. The sacrificial wafer thus serves as a gettering element, attracting and capturing particulates from the surrounding environment.
Abstract:
A deposit cleaning system for removing deposits from interior surfaces of ion sources and/or electrodes includes a fluorine source, a throttle mechanism, and a controller. The fluorine source supplies fluorine to the ion source as a cleaning material. The throttle mechanism mitigates loss of fluorine through a source aperture of the ion source by at least partially covering the source aperture. The controller controls the supply and flow rate from the fluorine source to the ion source and also controls the positioning of the throttle mechanism.
Abstract:
Techniques for reducing effects of photoresist outgassing are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for reducing effects of photoresist outgassing in an ion implanter. The apparatus may comprise a drift tube located between an end-station and an upstream beamline component. The apparatus may also comprise a first variable aperture between the drift tube and the end-station. The apparatus may further comprise a second variable aperture between the drift tube and the upstream beamline component. The first variable aperture and the second variable aperture can be adjusted to facilitate differential pumping.