Abstract:
An apparatus for producing light includes a chamber and an ignition source that ionizes a gas within the chamber. The apparatus also includes at least one laser that provides energy to the ionized gas within the chamber to produce a high brightness light. The laser can provide a substantially continuous amount of energy to the ionized gas to generate a substantially continuous high brightness light.
Abstract:
A radiation driven light source comprises laser and focusing optics. These produce a beam of radiation focused on a plasma forming zone within a first container containing a gas (e.g. Xe). Collection optics collects photons emitted by a plasma maintained by the laser radiation to form a beam of output radiation. First container is enclosed within a hermetically sealed second container. Any ozone generated within the second container as a result of ultraviolet components of the output radiation is completely contained within the second container. Second container further filters out the ultraviolet components. Microwave radiation may be used instead of laser radiation to form the plasma.
Abstract:
The invention relates to light sources with laser pumping and to methods for generating radiation with a high luminance in the ultraviolet (UV) and visible spectral ranges. The technical result of the invention includes extending the functional possibilities of a light source with laser pumping by virtue of increasing the luminance, increasing the coefficient of absorption of the laser radiation by a plasma, and significantly reducing the numerical aperture of a divergent laser beam which is to be occluded and which is passing through the plasma. The device comprises a chamber containing a gas, a laser producing a laser beam, an optical element, a region of radiating plasma produced in the chamber by the focused laser beam, an occluder, which is mounted on the axis of the divergent laser beam on the second side of the chamber, and an optical system for collecting plasma radiation.
Abstract:
Provided is a short arc discharge lamp that includes: a body including therein a reflection surface and having a front opening; a cathode and an anode opposed to each other in discharge space defined by the reflection surface surrounding the discharge space; a window member provided in front of the body and covering the front opening; and a window supporting member including an inner ring section, an outer ring section, and a coupling section. The inner ring section is configured to allow a circumferential side surface of the window member to be fixed thereto, the outer ring section is larger in diameter than the inner ring section, and the coupling section connects the inner ring section and the outer ring section together. The inner ring section includes, in front of the window member, a front edge section having a shape bent in a radial direction of the window member.
Abstract:
Systems and methods for providing laser sustained plasma light sources are disclosed. Different from conventional laser sustained plasma light sources where one fiber size and one wavelength combination is used in the lamphouse to generate light for different bands and pixel sizes, switchable fiber sizes and wavelength combinations are provided for optimal power output in different wavelength bands and pixel sizes. More specifically, switchable fiber configurations are provided where larger fibers with higher pump powers are used for bigger pixel sizes and higher wavelength bands while smaller fibers are used for smaller pixel size and shorter wavelength bands. Additionally and/or alternatively, pumping schemes are provided where pump wavelengths close to the absorption peak of the gas fill are used for bigger pixel sizes while pump wavelengths away from the gas fill absorption peak are used for smaller pixel sizes.
Abstract:
Reduction of solar wafer LID by exposure to continuous or intermittent High-Intensity full-spectrum Light Radiation, HILR, by an Enhanced Light Source, ELS, producing 3-10 Sols, optionally in the presence of forming gas or/and heating to within the range of from 100° C.-300° C. HILR is provided by ELS modules for stand-alone bulk/continuous processing, or integrated in wafer processing lines in a High-Intensity Light Zone, HILZ, downstream of a wafer firing furnace. A finger drive wafer transport provides continuous shadowless processing speeds of 200-400 inches/minute in the integrated furnace/HILZ. Wafer dwell time in the peak-firing zone is 1-2 seconds. Wafers are immediately cooled from peak firing temperature of 850° C.-1050° C. in a quench zone ahead of the HILZ-ELS modules. Dwell in the HILZ is from about 10 sec to 5 minutes, preferably 10-180 seconds. Intermittent HILR exposure is produced by electronic control, a mask, rotating slotted plate or moving belt.
Abstract:
A refillable plasma cell for use in a laser-sustained plasma light source includes a plasma bulb, the bulb being formed from a glass material substantially transparent to a selected wavelength of radiation, and a gas port assembly, the gas port assembly being operably connected to the bulb and disposed at a first portion of the gas bulb, wherein the bulb is configured to selectively receive a gas from a gas source via the gas port assembly.
Abstract:
The invention is directed to a sealed high intensity illumination device configured to receive a laser beam from a laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber includes a reflective chamber interior surface having a first parabolic contour and parabolic focal region, a second parabolic contour and parabolic focal region, and an interface surface. An ingress surface is disposed within the interface surface configured to admit the laser beam into the chamber, and an egress surface disposed within the interface surface configured to emit high intensity light from the chamber. The first parabolic contour is configured to reflect light from the first parabolic focal region to the second parabolic contour, and the second parabolic contour is configured to reflect light from the first parabolic contour to the second parabolic focal region.
Abstract:
A plasma light source includes a chamber having an ionizable medium therein, an ignition source configured to provide first electromagnetic radiation to the chamber, a sustaining source configured to separately provide second electromagnetic radiation to the chamber, a first curved mirror positioned adjacent the chamber, and a second curved mirror positioned opposite the first mirror and arranged to direct the first electromagnetic radiation toward the chamber. The second electromagnetic radiation may be different than the first electromagnetic radiation. Related devices and methods of operation are also discussed.
Abstract:
A laser-sustained plasma light source includes a plasma lamp configured to contain a volume of gas and receive illumination from a pump laser in order to generate a plasma. The plasma lamp includes one or more transparent portions transparent to illumination from the pump laser and at least a portion of the broadband radiation emitted by the plasma. The one or more transparent portions are formed from a transparent material having elevated hydroxide content above 700 ppm.