Abstract:
An electrical interconnection system comprises a bifurcated, multilayer flex circuit having electrode pads on the inner surfaces of the bifurcation. Electronic components are mounted on one or both sides of the flex circuit by conventional means. When the bifurcation is spread apart, the electrode pads are alignable with respective contacts on a printed circuit board. After bonding the pads to the contacts by soldering, conductive adhesive, or other means, a secure electrical connection is maintained while still allowing the flex circuit to bend somewhat from side to side, creating additional design options not available with rigidly mounted components and modules.
Abstract:
The present embodiments provide channel letter lighting devices and/or systems. A lighting system, comprising a plurality of electrically connected lighting units, comprising conductors to provide an electrical signal to each of the units. Each of the lighting units comprise a housing, a printed circuit board (PCB) mounted within the housing and having a plurality of tabs and a plurality light emitting elements on the tabs. The tabs are angled in relation of the remainder of the PCB or housing. The electrical signal applied to the light emitting elements causes them to emit light substantially away from said housing. The lighting system further comprises a sealant within the housing filling cavities around the light emitting elements and the cavity around said PCB and a mounting mechanism for mounting the unit to a structure.
Abstract:
One end of a flexible substrate is connected to a solid-state image sensing device and the other end constitutes an external connection part in which external lead-out electrodes are provided. A plurality of electronic components are mounted on a mounting part of the flexible substrate. The flexible substrate is bent at a first bent part thereof to make an acute angle with the solid-state image sensing device and also bent at a second bent part thereof to make an acute angle with the external connection part. The two acute angles are alternate angles and the solid-state image sensing device has a cross section of the letter Z.
Abstract:
A circuit package is disclosed including a flexible printed circuit (10) which overlies, and follows the contour of, a carrier (50) having a substantially zig-zag shaped surface. The flexible printed circuit of this circuit package is in the form of a tape having a periodic, modular wiring pattern extending along the length of the tape, with connection lands provided between adjacent wiring modules. The circuit package also includes a plug for maintaining the flexible printed circuit in place on the carrier. Circuit components (20) mounted on the flexible printed circuit abut planar portions of the zig-zag shaped surface of the carrier (50).
Abstract:
A flexible printed circuit board of band shape installed within a tubular or hollow polygonal prismatic casing along the circumferential direction of the casing is composed of at least two flat areas formed in the flexible printed circuit board, and circuit elements mounted on the flat areas.
Abstract:
A position transducer has an input shaft coupled to a variable inductance sensor to produce an output electrical signal representing shift angle position. The transducer includes a plurality of rigid circuit boards which are hinged to one another so that the circuit boards and the electronic circuitry supported on the boards can be wrapped around the variable inductance sensor. The individual rigid circuit board segments are laminated onto a flexible sheet having conductive tracks. The track sheet provides the hinged effect.The power supply which is mounted on one or more of the boards provides DC power through an AC circuit fed by a transistor which is switched on and off as a function of the power needs of the transducer. By thus having an ON duty cycle substantially less than 100 percent, the heat generated in the power supply is minimized thereby making feasible the packing density afforded by the plurality of hinged circuit boards.
Abstract:
A rollable display device includes a rollable structure including a plurality of unit structures, the rollable structure being configured to be rolled and unrolled based on the unit structures, and a display panel structure attached to the rollable structure, wherein respective widths of the unit structures increase in a first direction from a first side of the rollable structure to an opposite second side of the rollable structure.
Abstract:
Provided is a printed circuit board, including: a support substrate including a first region in which light emitting elements are mount, a second region extending from the first region, and a bending portion between the first region and the second region, an insulating substrate on the support substrate, wiring portions on the insulating substrate, and a protective layer on the wiring portions.
Abstract:
Flexible printed circuit (FPC) connector includes a flex circuit having first and second side surfaces and a thickness extending between the first and second side surfaces. The flex circuit includes a plurality of stacked substrate layers. The FPC connector also includes a conductive pathway extending through the flex circuit and a substrate protrusion coupled to the second side surface and projecting a distance away from the second side surface. The substrate protrusion is formed from at least one dielectric layer. The FPC connector also includes a contact pad that is directly coupled to at least one of the substrate protrusion or the second side surface of the flex circuit. The contact pad is electrically coupled to the conductive pathway.