Abstract:
A capacitor with a multiplicity of first plates and second plates in parallel relationship wherein the first plates terminate at a first face and the second plates terminate at a second face. A dielectric is between the first plates and the second plates. A first external termination is in electrical contact with the first plates and a second external termination is in electrical contact with the second plates. A first lead terminal is in electrical contact with the first external termination and the first lead terminal has a first foot below the first external termination and a first solder stop coated on the first foot between the first foot and the first external termination. A second lead terminal is in electrical contact with the second external termination wherein the second lead terminal comprises a second foot below the second external termination and a second solder stop is coated on the second foot between the second foot and the second external termination.
Abstract:
An interconnection apparatus and a method of forming an interconnection apparatus. Contact structures are attached to or formed on a first substrate. The first substrate is attached to a second substrate, which is larger than the first substrate. Multiple such first substrates may be attached to the second substrate in order to create an array of contact structures. Each contact structure may be elongate and resilient and may comprise a core that is over coated with a material that imparts desired structural properties to the contact structure.
Abstract:
A contact lead for engaging with an aperture lead of a circuit carrier, including a substrate contact portion electrically connected to a pad on a substrate a chip contact portion extending from the substrate contact portion and forming an angle with the substrate contact portion raising from the substrate. The contact lead chip contact portion may also be of a cylindrical shape vertically extending from the substrate contact portion. The present invention also provides a module including a printed circuit board having a plurality of pad thereon, the contact lead electrically connected to the pad, an integrated circuit carrier having a plurality of aperture leads, the aperture leads passing through the contact leads and contacting respectively thereof, and a housing structure for housing the module and providing access for the user to assemble the integrated circuit carrier.
Abstract:
A package-on-package (POP) package in which semiconductor packages are stacked using lead lines rather than conventional solder balls, and a fabricating method thereof are provided. According to the POP package and the fabricating method thereof of the present invention, the POP package is prevented from being short-circuited even when an underlying semiconductor package gets thicker and the POP package can sufficiently withstand deformation caused by post-fabrication warpage.
Abstract:
An elastic contact array circuitized substrate includes a circuitized substrate provided with circuit traces, and an array of three dimensional contact elements joined to the circuitized substrate and electrically coupled to the circuit traces. In one configuration, the array of three dimensional contacts are formed in a spring sheet material having anisotropic grains whose long direction is selected with respect to the longitudinal direction of elastic contact arms, in accordance with desired properties. In another configuration of the invention, the circuit traces are formed integrally within the spring sheet material.
Abstract:
Products and assemblies are provided for socketably receiving elongate interconnection elements, such as spring contact elements, extending from electronic components, such as semiconductor devices. Socket substrates are provided with capture pads for receiving ends of elongate interconnection elements extending from electronic components. Various capture pad configurations are disclosed. Connections to external devices are provided via conductive traces adjacent the surface of the socket substrate. The socket substrate may be supported by a support substrate. In a particularly preferred embodiment the capture pads are formed directly on a primary substrate such as a printed circuit board.
Abstract:
An electronic interconnection system for delivering high-current power and ground voltages using a non-bottom side of a chip package substrate. The system includes a printed wiring board (PWB), a chip package, and a bridge lead. The PWB has at least a first and a second contact pad. The chip package includes a chip and a package substrate. The chip is mounted onto the package substrate and the package substrate has a bottom surface having at least a first contact pad and a second surface having at least a second contact pad. The first contact pad of the PWB and the first contact pad of the package substrate are coupled together. The bridge lead couples the second contact pad of the PWB with the second contact pad of the package substrate. The bridge lead may be selected from styles including flying lead, edge wiping, top wiping, and double wiping.
Abstract:
In a probe card assembly, a series of probe elements can be arrayed on a silicon space transformer. The silicon space transformer can be fabricated with an array of primary contacts in a very tight pitch, comparable to the pitch of a semiconductor device. One preferred primary contact is a resilient spring contact. Conductive elements in the space transformer are routed to second contacts at a more relaxed pitch. In one preferred embodiment, the second contacts are suitable for directly attaching a ribbon cable, which in turn can be connected to provide selective connection to each primary contact. The silicon space transformer is mounted in a fixture that provides for resilient connection to a wafer or device to be tested. This fixture can be adjusted to planarize the primary contacts with the plane of a support probe card board.
Abstract:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.
Abstract:
A high-frequency package comprises a dielectric substrate, on an upper face of which a mounting portion of a high-frequency circuit component is formed, a first line conductor formed on the upper face for transmitting high-frequency signals, a first coplanar grounding conductor, a second line conductor formed on a lower face, a second coplanar grounding conductor, a through conductor formed inside for connecting the first and second line conductors, a grounding through conductor connecting the first and second coplanar grounding conductors, a metal terminal bonded to the second line conductor, and grounding metal terminals bonded to the second coplanar grounding conductor, wherein a gap between the grounding metal terminals is equal to or less than ½ of a wavelength of high-frequency signals.