Abstract:
Catalyst support materials, catalysts, methods of making such and uses thereof are described. Methods of making catalyst support material include combining anatase titanic slurry with i) a low molecular weight form of silica; and ii) a source of Mo to form a TiO2—MoO3-SiO2 mixture. Catalyst support material include from about 86% to about 94% weight anatase titanium dioxide; from about 0.1% to about 10% weight MoO3; and from about 0.1% to about 10% weight SiO2. Low molecular weight forms of silica include forms of silica having a volume weighted median size of less than 4 nm and average molecular weight of less than 44,000, either individually or in a combination of two or more thereof. Catalyst include such catalyst support material with from about 0.1 to about 3% weight of V2O5 and optionally from about 0.01% to about 2.5% weight P.
Abstract:
A catalyst usable in hydrotreatment processes: an alumina-based amorphous support, phosphorus, a C1-C4 dialkyl succinate, acetic acid and a hydro-dehydrogenizing function of at least one group VIII element and at least one group VIB element, preferably made up of cobalt and molybdenum, a catalyst whose Raman spectrum comprises the most intense bands characteristic of the Keggin heteropolyanions (974 and/or 990 cm−1), C1-C4 dialkyl succinate and acetic acid (896 cm−1). Preferably, the dialkyl succinate concerned is dimethyl succinate and its main band is at 853 cm−1.
Abstract:
The present invention concerns a hydrotreatment catalyst comprising a support, at least one metal selected from group VIB and at least one metal selected from group VIII of the periodic table, the quantity of metal from group VIB, expressed as the oxides, being in the range 6% to 25% by weight with respect to the total catalyst weight, the quantity of metal from group VIII, expressed as the oxides, being in the range 0.5% to 7% by weight with respect to the total catalyst weight, the support comprising at least 90% by weight of alumina, in which said alumina is obtained from a mixed and extruded boehmite gel, and in which the specific surface area of said catalyst is in the range 60 to 250 m2/g.
Abstract:
An object of the present invention is to provide a method for producing 3-hydroxytetrahydrofuran that can be used as a raw material for 1,3-butane diol, using as a raw material a compound that can be derived from biomass.The present invention relates to a method for producing 3-hydroxytetrahydrofuran including a step of reacting 1,4-anhydroerythritol and hydrogen to produce 3-hydroxytetrahydrofuran. In the production method, the step of reacting 1,4-anhydroerythritol and hydrogen is preferably allowed to proceed in the presence of a catalyst comprising a carrier and at least one oxide selected from the group consisting of an oxide of a Group 6 element and an oxide of a Group 7 element, the oxide being supported on the carrier.
Abstract:
An apatite compound represented by general formula: A10(PO4)6(OH)2 (wherein A represents Ba or a combination of Ba and Sr and/or Ca) is used as a carrier. This exhaust gas purifying catalyst is obtained by having the apatite compound carrier support a noble metal component.
Abstract:
Provided is a process for preparing a diaryl ether compound through the dehydration of an aromatic alcohol compound in the presence of a dehydration catalyst. The dehydration catalyst is an oxide of a heavy rare earth element, wherein the heavy rare earth element is terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, or mixtures thereof.
Abstract:
A catalyst for converting methane to aromatic hydrocarbons is described herein. The catalyst comprises an active metal or a compound thereof, and an inorganic oxide support wherein the active metal is added to the support in the form of metal oxalate. The metal oxalate-derived catalyst exhibits superior performance in the conversion of methane-rich feed to aromatics products relative to catalysts prepared from non-oxalate metal precursors. A method of making the catalyst and a method of using the catalyst are also described.
Abstract:
The present disclosure relates to a catalyst composition comprising (a) at least one rare earth metal, (b) at least one zeolite, and (c) at least one diluent, wherein, said rare earth metal is impregnated in at least one of (b) and (c); the ratio of said zeolite to said diluent ranges from 1:9 to 9:1; and the amount of said rare earth metal is in the range of 0.1 to 20 w/w %. The present disclosure also relates to a process for preparing a catalyst composition. Further, the present disclosure relates to a process for reducing the olefin content in a hydrocarbon stream using the catalyst of the present disclosure.
Abstract:
The present disclosure generally provides novel STT-type zeolite materials called PIDC-120501, PIDC-120502, and PIDC-120805/120806 or PIDC-type zeolites and a method of making these zeolites. The present disclosure also provides for the use of these zeolite materials as a catalyst and a method of preparing said catalyst. The PIDC-type zeolites or STT-type zeolite materials may be used as a catalyst, such as in Selective Catalytic Reduction (SCR) applications.
Abstract:
An exhaust purifying apparatus of an internal combustion engine is provided. The exhaust purifying apparatus includes a CO oxidation catalyst disposed in the exhaust flow passage of an internal combustion engine and capable of oxidizing and thereby purifying CO in the exhaust, and an HC adsorbent material loaded with a noble metal, for adsorbing HC in the exhaust. The exhaust purifying apparatus further includes an NOx adsorbent material for adsorbing NOx in the exhaust. These adsorbent materials are located on the upstream side in the exhaust flow direction with respect to the CO oxidation catalyst and disposed in order from the upstream. The CO oxidation catalyst contains Pd and CeO2 and is obtained by an oxidation treatment at a temperature of 850 to 950° C. The amount of Pd supported in the CO oxidation catalyst is from 0.1 to 2.5 mass % based on CeO2.